public class BiasedMF extends Recommender
Modifier and Type | Field and Description |
---|---|
protected double[] |
bi
Item bias
|
protected double[] |
bu
User bias
|
protected static double |
DEFAULT_GAMMA |
protected static double |
DEFAULT_LAMBDA |
protected double |
gamma
Learning rate
|
protected double |
lambda
Regularization parameter
|
protected int |
numFactors
Number of latent factors
|
protected int |
numIters
Number of iterations
|
protected double[][] |
p
User factors
|
protected double[][] |
q
Item factors
|
datamodel
Constructor and Description |
---|
BiasedMF(DataModel datamodel,
int numFactors,
int numIters)
Model constructor
|
BiasedMF(DataModel datamodel,
int numFactors,
int numIters,
double lambda)
Model constructor
|
BiasedMF(DataModel datamodel,
int numFactors,
int numIters,
double lambda,
double gamma,
long seed)
Model constructor
|
BiasedMF(DataModel datamodel,
int numFactors,
int numIters,
double lambda,
long seed)
Model constructor
|
BiasedMF(DataModel datamodel,
int numFactors,
int numIters,
long seed)
Model constructor
|
BiasedMF(DataModel datamodel,
Map<String,Object> params)
Model constructor from a Map containing the model's hyper-parameters values.
|
Modifier and Type | Method and Description |
---|---|
void |
fit()
Estimates model parameters given the hyper-parameters
|
double |
getGamma()
Get the learning rate parameter of the model
|
double |
getLambda()
Get the regularization parameter of the model
|
int |
getNumFactors()
Get the number of factors of the model
|
int |
getNumIters()
Get the number of iterations
|
double |
predict(int userIndex,
int itemIndex)
Computes a rating prediction
|
String |
toString() |
getDataModel, predict
protected static final double DEFAULT_GAMMA
protected static final double DEFAULT_LAMBDA
protected final double[][] p
protected final double[][] q
protected final double[] bu
protected final double[] bi
protected final double gamma
protected final double lambda
protected final int numFactors
protected final int numIters
public BiasedMF(DataModel datamodel, Map<String,Object> params)
datamodel
- DataModel instanceparams
- Model's hyper-parameters valuespublic BiasedMF(DataModel datamodel, int numFactors, int numIters)
datamodel
- DataModel instancenumFactors
- Number of factorsnumIters
- Number of iterationspublic BiasedMF(DataModel datamodel, int numFactors, int numIters, long seed)
datamodel
- DataModel instancenumFactors
- Number of factorsnumIters
- Number of iterationsseed
- Seed for random numbers generationpublic BiasedMF(DataModel datamodel, int numFactors, int numIters, double lambda)
datamodel
- DataModel instancenumFactors
- Number of factorsnumIters
- Number of iterationslambda
- Regularization parameterpublic BiasedMF(DataModel datamodel, int numFactors, int numIters, double lambda, long seed)
datamodel
- DataModel instancenumFactors
- Number of factorsnumIters
- Number of iterationslambda
- Regularization parameterseed
- Seed for random numbers generationpublic BiasedMF(DataModel datamodel, int numFactors, int numIters, double lambda, double gamma, long seed)
datamodel
- DataModel instancenumFactors
- Number of factorsnumIters
- Number of iterationslambda
- Regularization parametergamma
- Learning rate parameterseed
- Seed for random numbers generationpublic int getNumFactors()
public int getNumIters()
public double getLambda()
public double getGamma()
public void fit()
Recommender
fit
in class Recommender
public double predict(int userIndex, int itemIndex)
Recommender
predict
in class Recommender
userIndex
- Index of the user in the array of Users of the DataModel instanceitemIndex
- Index of the item in the array of Items of the DataModel instanceCopyright © 2020. All rights reserved.