Uses of Class
es.upm.etsisi.cf4j.data.DataModel
-
Packages that use DataModel Package Description es.upm.etsisi.cf4j.data This package contains data classes of CF4J.es.upm.etsisi.cf4j.recommender This package contains the implementation of different collaborative filtering based recommenders.es.upm.etsisi.cf4j.recommender.knn This package contains the implementation of different knn based collaborative filtering recommenders.es.upm.etsisi.cf4j.recommender.knn.itemSimilarityMetric This package contains different implementations of item-to-item similarity metrics used in the item-to-item knn based collaborative filtering algorithm.es.upm.etsisi.cf4j.recommender.knn.userSimilarityMetric This package contains different implementations of user-to-user similarity metric used in the user-to-user knn based collaborative filtering algorithm.es.upm.etsisi.cf4j.recommender.matrixFactorization This package contains the implementation of different matrix factorization based collaborative filtering recommenders.es.upm.etsisi.cf4j.recommender.neural This package contains the implementation of different neural networks based collaborative filtering recommenders.es.upm.etsisi.cf4j.util.optimization This package includes optimization utils designed to tune recommenders' hyper-parameters. -
-
Uses of DataModel in es.upm.etsisi.cf4j.data
Methods in es.upm.etsisi.cf4j.data that return DataModel Modifier and Type Method Description static DataModel
BenchmarkDataModels. BoardGameGeek()
Loads a DataModel instance of BoardGameGeek dataset.static DataModel
BenchmarkDataModels. BookCrossing()
Loads a DataModel instance of BookCrossing dataset.static DataModel
BenchmarkDataModels. FilmTrust()
Loads a DataModel instance of FilmTrust dataset.static DataModel
BenchmarkDataModels. Jester()
Loads a DataModel instance of Jester (Dataset 3) dataset.static DataModel
BenchmarkDataModels. LibimSeTi()
Loads a DataModel instance of LibimSeTi dataset.static DataModel
DataModel. load(String filePath)
Loads a DataModel from a previously serialized file (see save() method).static DataModel
BenchmarkDataModels. MovieLens100K()
Loads a DataModel instance of MovieLens 100K dataset.static DataModel
BenchmarkDataModels. MovieLens10M()
Loads a DataModel instance of MovieLens 1M dataset.static DataModel
BenchmarkDataModels. MovieLens1M()
Loads a DataModel instance of MovieLens 1M dataset.static DataModel
BenchmarkDataModels. MyAnimeList()
Loads a DataModel instance of MyAnimeList dataset.static DataModel
BenchmarkDataModels. NetflixPrize()
Loads a DataModel instance of Netflix Prize dataset. -
Uses of DataModel in es.upm.etsisi.cf4j.recommender
Fields in es.upm.etsisi.cf4j.recommender declared as DataModel Modifier and Type Field Description protected DataModel
Recommender. datamodel
DataModel instance used for the RecommenderMethods in es.upm.etsisi.cf4j.recommender that return DataModel Modifier and Type Method Description DataModel
Recommender. getDataModel()
Returns the DataModel instanceConstructors in es.upm.etsisi.cf4j.recommender with parameters of type DataModel Constructor Description Recommender(DataModel datamodel)
Recommender constructor -
Uses of DataModel in es.upm.etsisi.cf4j.recommender.knn
Constructors in es.upm.etsisi.cf4j.recommender.knn with parameters of type DataModel Constructor Description ItemKNN(DataModel datamodel, int numberOfNeighbors, ItemSimilarityMetric metric, ItemKNN.AggregationApproach aggregationApproach)
Recommender constructorItemKNN(DataModel datamodel, Map<String,Object> params)
Recommender constructor from a Map containing the recommender's hyper-parameters values.UserKNN(DataModel datamodel, int numberOfNeighbors, UserSimilarityMetric metric, UserKNN.AggregationApproach aggregationApproach)
Recommender constructorUserKNN(DataModel datamodel, Map<String,Object> params)
Recommender constructor from a Map containing the recommender's hyper-parameters values. -
Uses of DataModel in es.upm.etsisi.cf4j.recommender.knn.itemSimilarityMetric
Fields in es.upm.etsisi.cf4j.recommender.knn.itemSimilarityMetric declared as DataModel Modifier and Type Field Description protected DataModel
ItemSimilarityMetric. datamodel
DataModel for which de similarities must be computedMethods in es.upm.etsisi.cf4j.recommender.knn.itemSimilarityMetric with parameters of type DataModel Modifier and Type Method Description void
ItemSimilarityMetric. setDatamodel(DataModel datamodel)
Sets the DataModel for which the similarity are going to be computed -
Uses of DataModel in es.upm.etsisi.cf4j.recommender.knn.userSimilarityMetric
Fields in es.upm.etsisi.cf4j.recommender.knn.userSimilarityMetric declared as DataModel Modifier and Type Field Description protected DataModel
UserSimilarityMetric. datamodel
DataModel for which de similarities must be computedMethods in es.upm.etsisi.cf4j.recommender.knn.userSimilarityMetric with parameters of type DataModel Modifier and Type Method Description void
UserSimilarityMetric. setDatamodel(DataModel datamodel)
Sets the DataModel for which the similarity are going to be computed -
Uses of DataModel in es.upm.etsisi.cf4j.recommender.matrixFactorization
Constructors in es.upm.etsisi.cf4j.recommender.matrixFactorization with parameters of type DataModel Constructor Description BeMF(DataModel datamodel, int numFactors, int numIters, double learningRate, double regularization, double[] ratings)
Model constructorBeMF(DataModel datamodel, int numFactors, int numIters, double learningRate, double regularization, double[] ratings, long seed)
Model constructorBeMF(DataModel datamodel, Map<String,Object> params)
Model constructor from a Map containing the model's hyper-parameters values.BiasedMF(DataModel datamodel, int numFactors, int numIters)
Model constructorBiasedMF(DataModel datamodel, int numFactors, int numIters, double lambda)
Model constructorBiasedMF(DataModel datamodel, int numFactors, int numIters, double lambda, double gamma, long seed)
Model constructorBiasedMF(DataModel datamodel, int numFactors, int numIters, double lambda, long seed)
Model constructorBiasedMF(DataModel datamodel, int numFactors, int numIters, long seed)
Model constructorBiasedMF(DataModel datamodel, Map<String,Object> params)
Model constructor from a Map containing the model's hyper-parameters values.BNMF(DataModel datamodel, int numFactors, int numIters, double alpha, double beta)
Model constructorBNMF(DataModel datamodel, int numFactors, int numIters, double alpha, double beta, double r, long seed)
Model constructorBNMF(DataModel datamodel, int numFactors, int numIters, double alpha, double beta, long seed)
Model constructorBNMF(DataModel datamodel, Map<String,Object> params)
Model constructor from a Map containing the model's hyper-parameters values.CLiMF(DataModel datamodel, int numFactors, double gamma, double lambda, int numIters, double threshold)
Model constructorCLiMF(DataModel datamodel, int numFactors, double gamma, double lambda, int numIters, double threshold, long seed)
Model constructorCLiMF(DataModel datamodel, int numFactors, int numIters)
Model constructorCLiMF(DataModel datamodel, int numFactors, int numIters, double threshold)
Model constructorCLiMF(DataModel datamodel, int numFactors, int numIters, double threshold, long seed)
Model constructorCLiMF(DataModel datamodel, int numFactors, int numIters, long seed)
Model constructorCLiMF(DataModel datamodel, Map<String,Object> params)
Model constructor from a Map containing the model's hyper-parameters values.DeepMF(DataModel datamodel, int[] numFactors, int[] numIters, double[] learningRate, double[] regularization)
Model constructorDeepMF(DataModel datamodel, int[] numFactors, int[] numIters, double[] learningRate, double[] regularization, long seed)
Model constructorDeepMF(DataModel datamodel, Map<String,Object> params)
Model constructor from a Map containing the model's hyper-parameters values.DirMF(DataModel datamodel, int numFactors, int numIters, double learningRate, double regularization, double[] ratings)
Model constructorDirMF(DataModel datamodel, int numFactors, int numIters, double learningRate, double regularization, double[] ratings, long seed)
Model constructorDirMF(DataModel datamodel, Map<String,Object> params)
Model constructor from a Map containing the model's hyper-parameters values.HPF(DataModel datamodel, int numFactors, int numIters)
Models constructorHPF(DataModel datamodel, int numFactors, int numIters, double a, double aPrime, double bPrime, double c, double cPrime, double dPrime)
Models constructorHPF(DataModel datamodel, int numFactors, int numIters, double a, double aPrime, double bPrime, double c, double cPrime, double dPrime, long seed)
Models constructorHPF(DataModel datamodel, int numFactors, int numIters, long seed)
Models constructorHPF(DataModel datamodel, Map<String,Object> params)
Model constructor from a Map containing the model's hyper-parameters values.NMF(DataModel datamodel, int numFactors, int numIters)
Model constructorNMF(DataModel datamodel, int numFactors, int numIters, long seed)
Model constructorNMF(DataModel datamodel, Map<String,Object> params)
Model constructor from a Map containing the model's hyper-parameters values.PMF(DataModel datamodel, int numFactors, int numIters)
Model constructorPMF(DataModel datamodel, int numFactors, int numIters, double lambda)
Model constructorPMF(DataModel datamodel, int numFactors, int numIters, double lambda, double gamma, long seed)
Model constructorPMF(DataModel datamodel, int numFactors, int numIters, double lambda, long seed)
Model constructorPMF(DataModel datamodel, int numFactors, int numIters, long seed)
Model constructorPMF(DataModel datamodel, Map<String,Object> params)
Model constructor from a Map containing the model's hyper-parameters values.SVDPlusPlus(DataModel datamodel, int numFactors, int numIters)
Model constructorSVDPlusPlus(DataModel datamodel, int numFactors, int numIters, double gamma, double lambda)
Model constructorSVDPlusPlus(DataModel datamodel, int numFactors, int numIters, double gamma, double lambda, long seed)
Model constructorSVDPlusPlus(DataModel datamodel, int numFactors, int numIters, long seed)
Model constructorSVDPlusPlus(DataModel datamodel, Map<String,Object> params)
Model constructor from a Map containing the model's hyper-parameters values.URP(DataModel datamodel, int numFactors, double[] ratings, int numIters)
Model constructorURP(DataModel datamodel, int numFactors, double[] ratings, int numIters, double H)
Model constructorURP(DataModel datamodel, int numFactors, double[] ratings, int numIters, double H, long seed)
Model constructorURP(DataModel datamodel, int numFactors, double[] ratings, int numIters, long seed)
Model constructorURP(DataModel datamodel, Map<String,Object> params)
Model constructor from a Map containing the model's hyper-parameters values. -
Uses of DataModel in es.upm.etsisi.cf4j.recommender.neural
Constructors in es.upm.etsisi.cf4j.recommender.neural with parameters of type DataModel Constructor Description GMF(DataModel datamodel, int numFactors, int numEpochs, double learningRate)
Model constructorGMF(DataModel datamodel, int numFactors, int numEpochs, double learningRate, long seed)
Model constructorGMF(DataModel datamodel, Map<String,Object> params)
Model constructor from a Map containing the model's hyper-parameters values.MLP(DataModel datamodel, int numEpochs, double learningRate)
Model constructorMLP(DataModel datamodel, int numEpochs, double learningRate, int[] layers)
Model constructorMLP(DataModel datamodel, int numEpochs, double learningRate, long seed)
Model constructorMLP(DataModel datamodel, int numFactors, int numEpochs, double learningRate)
Model constructorMLP(DataModel datamodel, int numFactors, int numEpochs, double learningRate, int[] layers)
Model constructorMLP(DataModel datamodel, int numFactors, int numEpochs, double learningRate, int[] layers, long seed)
Model constructorMLP(DataModel datamodel, int numFactors, int numEpochs, double learningRate, long seed)
Model constructorMLP(DataModel datamodel, Map<String,Object> params)
Model constructor from a Map containing the model's hyper-parameters values.NCCF(DataModel datamodel, int numEpochs)
Model constructorNCCF(DataModel datamodel, int numEpochs, long seed)
Model constructorNCCF(DataModel datamodel, Map<String,Object> params)
Model constructor from a Map containing the model's hyper-parameters values.NeuMF(DataModel datamodel, int numEpochs, double learningRate)
Model constructorNeuMF(DataModel datamodel, int numEpochs, double learningRate, int[] layers)
Model constructorNeuMF(DataModel datamodel, int numEpochs, double learningRate, long seed)
Model constructorNeuMF(DataModel datamodel, int numFactorsGMF, int numFactorsMLP, int numEpochs, double learningRate)
Model constructorNeuMF(DataModel datamodel, int numFactorsGMF, int numFactorsMLP, int numEpochs, double learningRate, int[] layers)
Model constructorNeuMF(DataModel datamodel, int numFactorsGMF, int numFactorsMLP, int numEpochs, double learningRate, int[] layers, long seed)
Model constructorNeuMF(DataModel datamodel, int numFactorsGMF, int numFactorsMLP, int numEpochs, double learningRate, long seed)
Model constructorNeuMF(DataModel datamodel, Map<String,Object> params)
Model constructor from a Map containing the model's hyper-parameters values. -
Uses of DataModel in es.upm.etsisi.cf4j.util.optimization
Constructors in es.upm.etsisi.cf4j.util.optimization with parameters of type DataModel Constructor Description GridSearch(DataModel datamodel, ParamsGrid grid, Class<? extends Recommender> recommenderClass, Class<? extends QualityMeasure> qualityMeasureClass)
GridSearch constructorGridSearch(DataModel datamodel, ParamsGrid grid, Class<? extends Recommender> recommenderClass, Class<? extends QualityMeasure>[] qualityMeasuresClasses)
GridSearch constructorGridSearch(DataModel datamodel, ParamsGrid grid, Class<? extends Recommender> recommenderClass, Class<? extends QualityMeasure>[] qualityMeasuresClasses, Map<String,Object>[] qualityMeasuresParams)
GridSearch constructorGridSearch(DataModel datamodel, ParamsGrid grid, Class<? extends Recommender> recommenderClass, Class<? extends QualityMeasure> qualityMeasureClass, Map<String,Object> qualityMeasureParams)
GridSearch constructorGridSearchCV(DataModel datamodel, ParamsGrid grid, Class<? extends Recommender> recommenderClass, Class<? extends QualityMeasure>[] qualityMeasuresClasses, int cv)
GridSearchCV constructorGridSearchCV(DataModel datamodel, ParamsGrid grid, Class<? extends Recommender> recommenderClass, Class<? extends QualityMeasure>[] qualityMeasuresClasses, int cv, long seed)
GridSearchCV constructorGridSearchCV(DataModel datamodel, ParamsGrid grid, Class<? extends Recommender> recommenderClass, Class<? extends QualityMeasure>[] qualityMeasuresClasses, Map<String,Object>[] qualityMeasuresParams, int cv)
GridSearchCV constructorGridSearchCV(DataModel datamodel, ParamsGrid grid, Class<? extends Recommender> recommenderClass, Class<? extends QualityMeasure>[] qualityMeasuresClasses, Map<String,Object>[] qualityMeasuresParams, int cv, long seed)
GridSearchCV constructorGridSearchCV(DataModel datamodel, ParamsGrid grid, Class<? extends Recommender> recommenderClass, Class<? extends QualityMeasure> qualityMeasureClass, int cv)
GridSearchCV constructorGridSearchCV(DataModel datamodel, ParamsGrid grid, Class<? extends Recommender> recommenderClass, Class<? extends QualityMeasure> qualityMeasureClass, int cv, long seed)
GridSearchCV constructorGridSearchCV(DataModel datamodel, ParamsGrid grid, Class<? extends Recommender> recommenderClass, Class<? extends QualityMeasure> qualityMeasureClass, Map<String,Object> qualityMeasureParams, int cv)
GridSearchCV constructorGridSearchCV(DataModel datamodel, ParamsGrid grid, Class<? extends Recommender> recommenderClass, Class<? extends QualityMeasure> qualityMeasureClass, Map<String,Object> qualityMeasureParams, int cv, long seed)
GridSearchCV constructorRandomSearch(DataModel datamodel, ParamsGrid grid, Class<? extends Recommender> recommenderClass, Class<? extends QualityMeasure>[] qualityMeasuresClasses, double coverage)
RandomSearch constructorRandomSearch(DataModel datamodel, ParamsGrid grid, Class<? extends Recommender> recommenderClass, Class<? extends QualityMeasure>[] qualityMeasuresClasses, double coverage, long seed)
RandomSearch constructorRandomSearch(DataModel datamodel, ParamsGrid grid, Class<? extends Recommender> recommenderClass, Class<? extends QualityMeasure>[] qualityMeasuresClasses, int numIters)
RandomSearch constructorRandomSearch(DataModel datamodel, ParamsGrid grid, Class<? extends Recommender> recommenderClass, Class<? extends QualityMeasure>[] qualityMeasuresClasses, Map<String,Object>[] qualityMeasuresParams, double coverage)
RandomSearch constructorRandomSearch(DataModel datamodel, ParamsGrid grid, Class<? extends Recommender> recommenderClass, Class<? extends QualityMeasure>[] qualityMeasuresClasses, Map<String,Object>[] qualityMeasuresParams, double coverage, long seed)
RandomSearch constructorRandomSearch(DataModel datamodel, ParamsGrid grid, Class<? extends Recommender> recommenderClass, Class<? extends QualityMeasure>[] qualityMeasuresClasses, Map<String,Object>[] qualityMeasuresParams, int numIters)
RandomSearch constructorRandomSearch(DataModel datamodel, ParamsGrid grid, Class<? extends Recommender> recommenderClass, Class<? extends QualityMeasure>[] qualityMeasuresClasses, Map<String,Object>[] qualityMeasuresParams, int numIters, long seed)
RandomSearch constructorRandomSearch(DataModel datamodel, ParamsGrid grid, Class<? extends Recommender> recommenderClass, Class<? extends QualityMeasure>[] qualityMeasuresClasses, Map<String,Object>[] qualityMeasuresParams, int numIters, long seed, String progressPrefix)
RandomSearch constructor to be used inside es.upm.etsisi.cf4j.util.optimization packageRandomSearch(DataModel datamodel, ParamsGrid grid, Class<? extends Recommender> recommenderClass, Class<? extends QualityMeasure> qualityMeasureClass, double coverage)
RandomSearch constructorRandomSearch(DataModel datamodel, ParamsGrid grid, Class<? extends Recommender> recommenderClass, Class<? extends QualityMeasure> qualityMeasureClass, double coverage, long seed)
RandomSearch constructorRandomSearch(DataModel datamodel, ParamsGrid grid, Class<? extends Recommender> recommenderClass, Class<? extends QualityMeasure> qualityMeasureClass, int numIters)
RandomSearch constructorRandomSearch(DataModel datamodel, ParamsGrid grid, Class<? extends Recommender> recommenderClass, Class<? extends QualityMeasure> qualityMeasureClass, Map<String,Object> qualityMeasureParams, double coverage)
RandomSearch constructorRandomSearch(DataModel datamodel, ParamsGrid grid, Class<? extends Recommender> recommenderClass, Class<? extends QualityMeasure> qualityMeasureClass, Map<String,Object> qualityMeasureParams, double coverage, long seed)
RandomSearch constructorRandomSearch(DataModel datamodel, ParamsGrid grid, Class<? extends Recommender> recommenderClass, Class<? extends QualityMeasure> qualityMeasureClass, Map<String,Object> qualityMeasureParams, int numIters)
RandomSearch constructorRandomSearch(DataModel datamodel, ParamsGrid grid, Class<? extends Recommender> recommenderClass, Class<? extends QualityMeasure> qualityMeasureClass, Map<String,Object> qualityMeasureParams, int numIters, long seed)
RandomSearch constructorRandomSearchCV(DataModel datamodel, ParamsGrid grid, Class<? extends Recommender> recommenderClass, Class<? extends QualityMeasure>[] qualityMeasuresClasses, int cv, double coverage)
RandomSearchCV constructorRandomSearchCV(DataModel datamodel, ParamsGrid grid, Class<? extends Recommender> recommenderClass, Class<? extends QualityMeasure>[] qualityMeasuresClasses, int cv, double coverage, long seed)
RandomSearchCV constructorRandomSearchCV(DataModel datamodel, ParamsGrid grid, Class<? extends Recommender> recommenderClass, Class<? extends QualityMeasure>[] qualityMeasuresClasses, int cv, int numIters)
RandomSearchCV constructorRandomSearchCV(DataModel datamodel, ParamsGrid grid, Class<? extends Recommender> recommenderClass, Class<? extends QualityMeasure>[] qualityMeasuresClasses, Map<String,Object>[] qualityMeasuresParams, int cv, double coverage)
RandomSearchCV constructorRandomSearchCV(DataModel datamodel, ParamsGrid grid, Class<? extends Recommender> recommenderClass, Class<? extends QualityMeasure>[] qualityMeasuresClasses, Map<String,Object>[] qualityMeasuresParams, int cv, double coverage, long seed)
RandomSearchCV constructorRandomSearchCV(DataModel datamodel, ParamsGrid grid, Class<? extends Recommender> recommenderClass, Class<? extends QualityMeasure>[] qualityMeasuresClasses, Map<String,Object>[] qualityMeasuresParams, int cv, int numIters)
RandomSearchCV constructorRandomSearchCV(DataModel datamodel, ParamsGrid grid, Class<? extends Recommender> recommenderClass, Class<? extends QualityMeasure>[] qualityMeasuresClasses, Map<String,Object>[] qualityMeasuresParams, int cv, int numIters, long seed)
RandomSearchCV constructorRandomSearchCV(DataModel datamodel, ParamsGrid grid, Class<? extends Recommender> recommenderClass, Class<? extends QualityMeasure> qualityMeasureClass, int cv, double coverage)
RandomSearchCV constructorRandomSearchCV(DataModel datamodel, ParamsGrid grid, Class<? extends Recommender> recommenderClass, Class<? extends QualityMeasure> qualityMeasureClass, int cv, double coverage, long seed)
RandomSearchCV constructorRandomSearchCV(DataModel datamodel, ParamsGrid grid, Class<? extends Recommender> recommenderClass, Class<? extends QualityMeasure> qualityMeasureClass, int cv, int numIters)
RandomSearchCV constructorRandomSearchCV(DataModel datamodel, ParamsGrid grid, Class<? extends Recommender> recommenderClass, Class<? extends QualityMeasure> qualityMeasureClass, Map<String,Object> qualityMeasureParams, int cv, double coverage)
RandomSearchCV constructorRandomSearchCV(DataModel datamodel, ParamsGrid grid, Class<? extends Recommender> recommenderClass, Class<? extends QualityMeasure> qualityMeasureClass, Map<String,Object> qualityMeasureParams, int cv, double coverage, long seed)
RandomSearchCV constructorRandomSearchCV(DataModel datamodel, ParamsGrid grid, Class<? extends Recommender> recommenderClass, Class<? extends QualityMeasure> qualityMeasureClass, Map<String,Object> qualityMeasureParams, int cv, int numIters)
RandomSearchCV constructorRandomSearchCV(DataModel datamodel, ParamsGrid grid, Class<? extends Recommender> recommenderClass, Class<? extends QualityMeasure> qualityMeasureClass, Map<String,Object> qualityMeasureParams, int cv, int numIters, long seed)
RandomSearchCV constructor
-