A B C D E F G H I J K L M N P Q R S T U V W X Y
All Classes All Packages
All Classes All Packages
All Classes All Packages
A
- a - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.BNMF
-
User factors
- a - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.HPF
- add(int, double) - Method in class es.upm.etsisi.cf4j.data.types.SortedRatingList
-
Adds an ordered rating to the SortedRatingList.
- addColumn(String, double) - Method in class es.upm.etsisi.cf4j.util.plot.ColumnPlot
-
Adds a column to the plot
- addFixedParam(String, boolean) - Method in class es.upm.etsisi.cf4j.util.optimization.ParamsGrid
-
Adds a fixed parameter
- addFixedParam(String, double) - Method in class es.upm.etsisi.cf4j.util.optimization.ParamsGrid
-
Adds a fixed parameter
- addFixedParam(String, int) - Method in class es.upm.etsisi.cf4j.util.optimization.ParamsGrid
-
Adds a fixed parameter
- addFixedParam(String, long) - Method in class es.upm.etsisi.cf4j.util.optimization.ParamsGrid
-
Adds a fixed parameter
- addFixedParam(String, Object) - Method in class es.upm.etsisi.cf4j.util.optimization.ParamsGrid
-
Adds a fixed parameter
- addFixedParam(String, String) - Method in class es.upm.etsisi.cf4j.util.optimization.ParamsGrid
-
Adds a fixed parameter
- addParam(String, boolean[]) - Method in class es.upm.etsisi.cf4j.util.optimization.ParamsGrid
-
Adds a variable parameter
- addParam(String, double[]) - Method in class es.upm.etsisi.cf4j.util.optimization.ParamsGrid
-
Adds a variable parameter
- addParam(String, int[]) - Method in class es.upm.etsisi.cf4j.util.optimization.ParamsGrid
-
Adds a variable parameter
- addParam(String, long[]) - Method in class es.upm.etsisi.cf4j.util.optimization.ParamsGrid
-
Adds a variable parameter
- addParam(String, Object[]) - Method in class es.upm.etsisi.cf4j.util.optimization.ParamsGrid
-
Adds a variable parameter
- addParam(String, String[]) - Method in class es.upm.etsisi.cf4j.util.optimization.ParamsGrid
-
Adds a variable parameter
- addPoint(double, double) - Method in class es.upm.etsisi.cf4j.util.plot.ScatterPlot
-
Adds new point to the scatter plot
- addRating(int, double) - Method in class es.upm.etsisi.cf4j.data.Item
-
Adds a new rating of an user to the item.
- addRating(int, double) - Method in class es.upm.etsisi.cf4j.data.User
-
Adds a new rating of the user to an item.
- addRating(int, int, double) - Method in class es.upm.etsisi.cf4j.data.DataModel
-
Adds a single (training) rating to the DataModel.
- addSeries(String) - Method in class es.upm.etsisi.cf4j.util.plot.LinePlot
-
Adds a new empty series to the plot.
- addSeries(String) - Method in class es.upm.etsisi.cf4j.util.plot.XYPlot
-
Adds a new empty series to the plot.
- addSeries(String, double) - Method in class es.upm.etsisi.cf4j.util.plot.LinePlot
-
Adds a new series to the plot initializing all the values to a constant one.
- addSeries(String, double[]) - Method in class es.upm.etsisi.cf4j.util.plot.LinePlot
-
Adds a new series to the plot. y values positions must be correlated with xs values.
- addSeries(String, double[], double[]) - Method in class es.upm.etsisi.cf4j.util.plot.XYPlot
-
Adds a new series to the plot. xs and ys positions must be correlated with point labels.
- addSeries(String, double, double) - Method in class es.upm.etsisi.cf4j.util.plot.XYPlot
-
Adds a new series to the plot initializing x and y to a constant one for all point labels.
- addTestRating(int, double) - Method in class es.upm.etsisi.cf4j.data.TestItem
-
Adds a new test rating of a test user to the test item.
- addTestRating(int, double) - Method in class es.upm.etsisi.cf4j.data.TestUser
-
Adds a new test rating of the test user to an test item.
- addTestRating(int, int, double) - Method in class es.upm.etsisi.cf4j.data.DataModel
-
Adds a single test rating to the DataModel.
- addValue(double) - Method in class es.upm.etsisi.cf4j.util.plot.HistogramPlot
-
Adds new value to the histogram
- AdjustedCosine - Class in es.upm.etsisi.cf4j.recommender.knn.itemSimilarityMetric
-
Implements traditional Adjusted Cosine as CF similarity metric for the items.
- AdjustedCosine - Class in es.upm.etsisi.cf4j.recommender.knn.userSimilarityMetric
-
Implements traditional Adjusted Cosine as CF similarity metric.
- AdjustedCosine() - Constructor for class es.upm.etsisi.cf4j.recommender.knn.itemSimilarityMetric.AdjustedCosine
- AdjustedCosine() - Constructor for class es.upm.etsisi.cf4j.recommender.knn.userSimilarityMetric.AdjustedCosine
- afterRun() - Method in class es.upm.etsisi.cf4j.recommender.knn.itemSimilarityMetric.ItemSimilarityMetric
- afterRun() - Method in class es.upm.etsisi.cf4j.recommender.knn.userSimilarityMetric.UserSimilarityMetric
- afterRun() - Method in interface es.upm.etsisi.cf4j.util.process.Partible
-
Is executed once after execute the method exec.
- aggregationApproach - Variable in class es.upm.etsisi.cf4j.recommender.knn.ItemKNN
-
Aggregation approach used to aggregate k-nearest neighbors ratings
- aggregationApproach - Variable in class es.upm.etsisi.cf4j.recommender.knn.UserKNN
-
Aggregation approach used to aggregate k-nearest neighbors ratings
- alpha - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.BNMF
-
This hyper-parameter is related to the possibility of obtaining overlapping groups of users sharing the same tastes.
- alpha - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.URP
-
Alpha parameter
- aPrime - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.HPF
- arrayAverage(double[]) - Static method in class es.upm.etsisi.cf4j.util.Maths
-
Calculates the average of an double array
- arrayAverage(int[]) - Static method in class es.upm.etsisi.cf4j.util.Maths
-
Calculates the average of an int array
- arrayStandardDeviation(double[]) - Static method in class es.upm.etsisi.cf4j.util.Maths
-
Calculates the standard deviation of an double array
- arrayStandardDeviation(int[]) - Static method in class es.upm.etsisi.cf4j.util.Maths
-
Calculate the standard deviation of an int array
- average - Variable in class es.upm.etsisi.cf4j.data.Item
-
Average (training) rating
- average - Variable in class es.upm.etsisi.cf4j.data.User
-
Average (training) rating
- averageTest - Variable in class es.upm.etsisi.cf4j.data.TestItem
-
Average test rating
- averageTest - Variable in class es.upm.etsisi.cf4j.data.TestUser
-
Average test rating
B
- b - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.BNMF
-
Item factors
- beforeRun() - Method in class es.upm.etsisi.cf4j.recommender.knn.itemSimilarityMetric.ItemSimilarityMetric
- beforeRun() - Method in class es.upm.etsisi.cf4j.recommender.knn.itemSimilarityMetric.JMSD
- beforeRun() - Method in class es.upm.etsisi.cf4j.recommender.knn.itemSimilarityMetric.MSD
- beforeRun() - Method in class es.upm.etsisi.cf4j.recommender.knn.itemSimilarityMetric.PIP
- beforeRun() - Method in class es.upm.etsisi.cf4j.recommender.knn.itemSimilarityMetric.Singularities
- beforeRun() - Method in class es.upm.etsisi.cf4j.recommender.knn.userSimilarityMetric.CJMSD
- beforeRun() - Method in class es.upm.etsisi.cf4j.recommender.knn.userSimilarityMetric.JMSD
- beforeRun() - Method in class es.upm.etsisi.cf4j.recommender.knn.userSimilarityMetric.MSD
- beforeRun() - Method in class es.upm.etsisi.cf4j.recommender.knn.userSimilarityMetric.PIP
- beforeRun() - Method in class es.upm.etsisi.cf4j.recommender.knn.userSimilarityMetric.Singularities
- beforeRun() - Method in class es.upm.etsisi.cf4j.recommender.knn.userSimilarityMetric.UserSimilarityMetric
- beforeRun() - Method in interface es.upm.etsisi.cf4j.util.process.Partible
-
Is executed once before execute the method 'exec'.
- BeMF - Class in es.upm.etsisi.cf4j.recommender.matrixFactorization
-
Implements Ortega, F., Lara-Cabrera, R., González-Prieto, Á., & Bobadilla, J. (2021).
- BeMF(DataModel, int, int, double, double, double[]) - Constructor for class es.upm.etsisi.cf4j.recommender.matrixFactorization.BeMF
-
Model constructor
- BeMF(DataModel, int, int, double, double, double[], long) - Constructor for class es.upm.etsisi.cf4j.recommender.matrixFactorization.BeMF
-
Model constructor
- BeMF(DataModel, Map<String, Object>) - Constructor for class es.upm.etsisi.cf4j.recommender.matrixFactorization.BeMF
-
Model constructor from a Map containing the model's hyper-parameters values.
- BenchmarkDataModels - Class in es.upm.etsisi.cf4j.data
-
This class allows final users to work with benchmark DataModel instances.
- BenchmarkDataModels() - Constructor for class es.upm.etsisi.cf4j.data.BenchmarkDataModels
- beta - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.BNMF
-
This hyper-parameter represents the amount of evidence that the algorithm requires to deduce that a group of users likes an item.
- beta - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.URP
-
Beta parameter
- bi - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.BiasedMF
-
Item bias
- bi - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.SVDPlusPlus
-
bi parameter
- BiasedMF - Class in es.upm.etsisi.cf4j.recommender.matrixFactorization
-
Implements Koren, Y., Bell, R., & Volinsky, C. (2009).
- BiasedMF(DataModel, int, int) - Constructor for class es.upm.etsisi.cf4j.recommender.matrixFactorization.BiasedMF
-
Model constructor
- BiasedMF(DataModel, int, int, double) - Constructor for class es.upm.etsisi.cf4j.recommender.matrixFactorization.BiasedMF
-
Model constructor
- BiasedMF(DataModel, int, int, double, double, long) - Constructor for class es.upm.etsisi.cf4j.recommender.matrixFactorization.BiasedMF
-
Model constructor
- BiasedMF(DataModel, int, int, double, long) - Constructor for class es.upm.etsisi.cf4j.recommender.matrixFactorization.BiasedMF
-
Model constructor
- BiasedMF(DataModel, int, int, long) - Constructor for class es.upm.etsisi.cf4j.recommender.matrixFactorization.BiasedMF
-
Model constructor
- BiasedMF(DataModel, Map<String, Object>) - Constructor for class es.upm.etsisi.cf4j.recommender.matrixFactorization.BiasedMF
-
Model constructor from a Map containing the model's hyper-parameters values.
- BiasedMFGridSearch - Class in es.upm.etsisi.cf4j.examples.gridSearch
-
In this example we tune the hyper-parameters of BiasedMF recommender using the GridSearch tool.
- BiasedMFGridSearch() - Constructor for class es.upm.etsisi.cf4j.examples.gridSearch.BiasedMFGridSearch
- BNMF - Class in es.upm.etsisi.cf4j.recommender.matrixFactorization
-
Implements Hernando, A., Bobadilla, J., & Ortega, F. (2016).
- BNMF(DataModel, int, int, double, double) - Constructor for class es.upm.etsisi.cf4j.recommender.matrixFactorization.BNMF
-
Model constructor
- BNMF(DataModel, int, int, double, double, double, long) - Constructor for class es.upm.etsisi.cf4j.recommender.matrixFactorization.BNMF
-
Model constructor
- BNMF(DataModel, int, int, double, double, long) - Constructor for class es.upm.etsisi.cf4j.recommender.matrixFactorization.BNMF
-
Model constructor
- BNMF(DataModel, Map<String, Object>) - Constructor for class es.upm.etsisi.cf4j.recommender.matrixFactorization.BNMF
-
Model constructor from a Map containing the model's hyper-parameters values.
- BoardGameGeek() - Static method in class es.upm.etsisi.cf4j.data.BenchmarkDataModels
-
Loads a DataModel instance of BoardGameGeek dataset.
- BookCrossing() - Static method in class es.upm.etsisi.cf4j.data.BenchmarkDataModels
-
Loads a DataModel instance of BookCrossing dataset.
- bPrime - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.HPF
- bu - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.BiasedMF
-
User bias
- bu - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.SVDPlusPlus
-
bu parameter
C
- c - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.HPF
- CJMSD - Class in es.upm.etsisi.cf4j.recommender.knn.userSimilarityMetric
-
Implements the following CF similarity metric: Bobadilla, J., Ortega, F., Hernando, A., & Arroyo, A. (2012).
- CJMSD() - Constructor for class es.upm.etsisi.cf4j.recommender.knn.userSimilarityMetric.CJMSD
- CLiMF - Class in es.upm.etsisi.cf4j.recommender.matrixFactorization
-
Implements Shi, Y., Karatzoglou, A., Baltrunas, L., Larson, M., Oliver, N., & Hanjalic, A
- CLiMF(DataModel, int, double, double, int, double) - Constructor for class es.upm.etsisi.cf4j.recommender.matrixFactorization.CLiMF
-
Model constructor
- CLiMF(DataModel, int, double, double, int, double, long) - Constructor for class es.upm.etsisi.cf4j.recommender.matrixFactorization.CLiMF
-
Model constructor
- CLiMF(DataModel, int, int) - Constructor for class es.upm.etsisi.cf4j.recommender.matrixFactorization.CLiMF
-
Model constructor
- CLiMF(DataModel, int, int, double) - Constructor for class es.upm.etsisi.cf4j.recommender.matrixFactorization.CLiMF
-
Model constructor
- CLiMF(DataModel, int, int, double, long) - Constructor for class es.upm.etsisi.cf4j.recommender.matrixFactorization.CLiMF
-
Model constructor
- CLiMF(DataModel, int, int, long) - Constructor for class es.upm.etsisi.cf4j.recommender.matrixFactorization.CLiMF
-
Model constructor
- CLiMF(DataModel, Map<String, Object>) - Constructor for class es.upm.etsisi.cf4j.recommender.matrixFactorization.CLiMF
-
Model constructor from a Map containing the model's hyper-parameters values.
- ColumnPlot - Class in es.upm.etsisi.cf4j.util.plot
-
Implements a column plot.
- ColumnPlot(String, String) - Constructor for class es.upm.etsisi.cf4j.util.plot.ColumnPlot
-
Creates a new ColumnPlot
- ColumnPlotExample - Class in es.upm.etsisi.cf4j.examples.plot
-
In this example we analyze the rating value distribution of MovieLens 1M dataset using a ColumnPlot.
- ColumnPlotExample() - Constructor for class es.upm.etsisi.cf4j.examples.plot.ColumnPlotExample
- compareTo(Rating) - Method in class es.upm.etsisi.cf4j.data.types.Rating
- contains(String) - Method in class es.upm.etsisi.cf4j.data.DataBank
-
Finds if an element exist inside the DataBank
- Correlation - Class in es.upm.etsisi.cf4j.recommender.knn.itemSimilarityMetric
-
This class Implements Pearson Correlation as CF similarity metric for the items.
- Correlation - Class in es.upm.etsisi.cf4j.recommender.knn.userSimilarityMetric
-
Implements traditional Pearson Correlation as CF similarity metric.
- Correlation() - Constructor for class es.upm.etsisi.cf4j.recommender.knn.itemSimilarityMetric.Correlation
- Correlation() - Constructor for class es.upm.etsisi.cf4j.recommender.knn.userSimilarityMetric.Correlation
- CorrelationConstrained - Class in es.upm.etsisi.cf4j.recommender.knn.itemSimilarityMetric
-
This class implements the Constrained Correlation as CF similarity metric for items.
- CorrelationConstrained - Class in es.upm.etsisi.cf4j.recommender.knn.userSimilarityMetric
-
Implements traditional Pearson Correlation Constrained as CF similarity metric.
- CorrelationConstrained(double) - Constructor for class es.upm.etsisi.cf4j.recommender.knn.itemSimilarityMetric.CorrelationConstrained
-
Constructor of the similarity metric
- CorrelationConstrained(double) - Constructor for class es.upm.etsisi.cf4j.recommender.knn.userSimilarityMetric.CorrelationConstrained
-
Constructor of the similarity metric
- Cosine - Class in es.upm.etsisi.cf4j.recommender.knn.itemSimilarityMetric
-
Implements Cosine as CF similarity metric for the items.
- Cosine - Class in es.upm.etsisi.cf4j.recommender.knn.userSimilarityMetric
-
Implements traditional Cosine as CF similarity metric.
- Cosine() - Constructor for class es.upm.etsisi.cf4j.recommender.knn.itemSimilarityMetric.Cosine
- Cosine() - Constructor for class es.upm.etsisi.cf4j.recommender.knn.userSimilarityMetric.Cosine
- Coverage - Class in es.upm.etsisi.cf4j.qualityMeasure.prediction
-
This class calculates the Coverage of the recommender system.
- Coverage(Recommender) - Constructor for class es.upm.etsisi.cf4j.qualityMeasure.prediction.Coverage
-
Constructor of the class which basically calls the father's one.
- cPrime - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.HPF
D
- dataBank - Variable in class es.upm.etsisi.cf4j.data.Item
-
DataBank to store heterogeneous information
- dataBank - Variable in class es.upm.etsisi.cf4j.data.User
-
DataBank to store heterogeneous information
- DataBank - Class in es.upm.etsisi.cf4j.data
-
DataBank is focused on storing heterogeneous data as a support to the calculations made in the recommendation process.
- DataBank() - Constructor for class es.upm.etsisi.cf4j.data.DataBank
- dataCalculation(TestUser, int[]) - Method in class es.upm.etsisi.cf4j.qualityMeasure.recommendation.NDCG
-
Function to process de data in the NDCG algorithm.
- datamodel - Variable in class es.upm.etsisi.cf4j.recommender.knn.itemSimilarityMetric.ItemSimilarityMetric
-
DataModel for which de similarities must be computed
- datamodel - Variable in class es.upm.etsisi.cf4j.recommender.knn.userSimilarityMetric.UserSimilarityMetric
-
DataModel for which de similarities must be computed
- datamodel - Variable in class es.upm.etsisi.cf4j.recommender.Recommender
-
DataModel instance used for the Recommender
- DataModel - Class in es.upm.etsisi.cf4j.data
-
This class manages all the information related with a collaborative filtering based recommender system.
- DataModel(DataSet) - Constructor for class es.upm.etsisi.cf4j.data.DataModel
-
This constructor initializes the DataModel with the contents of the given DataSet.
- DataSet - Interface in es.upm.etsisi.cf4j.data
-
This interface works as a bridge between the raw file and the DataModel.
- DataSetEntry - Class in es.upm.etsisi.cf4j.data.types
-
Structural class which stores Triplets: user identifier (String), item identifier (string), and rating value.
- DataSetEntry(String, String, double) - Constructor for class es.upm.etsisi.cf4j.data.types.DataSetEntry
-
Creates a new DataSet entry form an user identifier, an item identifier and a rating value.
- DeepMF - Class in es.upm.etsisi.cf4j.recommender.matrixFactorization
-
Implements Lara-Cabrera, R., González-Prieto, Á., & Ortega, F. (2020).
- DeepMF(DataModel, int[], int[], double[], double[]) - Constructor for class es.upm.etsisi.cf4j.recommender.matrixFactorization.DeepMF
-
Model constructor
- DeepMF(DataModel, int[], int[], double[], double[], long) - Constructor for class es.upm.etsisi.cf4j.recommender.matrixFactorization.DeepMF
-
Model constructor
- DeepMF(DataModel, Map<String, Object>) - Constructor for class es.upm.etsisi.cf4j.recommender.matrixFactorization.DeepMF
-
Model constructor from a Map containing the model's hyper-parameters values.
- DEFAULT_A - Static variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.HPF
- DEFAULT_A_PRIME - Static variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.HPF
- DEFAULT_B_PRIME - Static variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.HPF
- DEFAULT_C - Static variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.HPF
- DEFAULT_C_PRIME - Static variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.HPF
- DEFAULT_D_PRIME - Static variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.HPF
- DEFAULT_GAMMA - Static variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.BiasedMF
- DEFAULT_GAMMA - Static variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.CLiMF
- DEFAULT_GAMMA - Static variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.PMF
- DEFAULT_GAMMA - Static variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.SVDPlusPlus
- DEFAULT_H - Static variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.URP
- DEFAULT_LAMBDA - Static variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.BiasedMF
- DEFAULT_LAMBDA - Static variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.CLiMF
- DEFAULT_LAMBDA - Static variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.PMF
- DEFAULT_LAMBDA - Static variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.SVDPlusPlus
- DEFAULT_R - Static variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.BNMF
- DEFAULT_SEPARATOR - Static variable in class es.upm.etsisi.cf4j.data.RandomSplitDataSet
- DEFAULT_SEPARATOR - Static variable in class es.upm.etsisi.cf4j.data.TrainTestFilesDataSet
- delete(String) - Method in class es.upm.etsisi.cf4j.data.DataBank
-
Deletes a value associated to a single element key.
- deleteAll() - Method in class es.upm.etsisi.cf4j.data.DataBank
-
Deletes all content of this DataBank.
- DEVIATION_FROM_MEAN - es.upm.etsisi.cf4j.recommender.knn.UserKNN.AggregationApproach
- DirMF - Class in es.upm.etsisi.cf4j.recommender.matrixFactorization
-
Implements Lara-Cabrera, R., González, Á., Ortega, F., & González-Prieto, Á. (2022).
- DirMF(DataModel, int, int, double, double, double[]) - Constructor for class es.upm.etsisi.cf4j.recommender.matrixFactorization.DirMF
-
Model constructor
- DirMF(DataModel, int, int, double, double, double[], long) - Constructor for class es.upm.etsisi.cf4j.recommender.matrixFactorization.DirMF
-
Model constructor
- DirMF(DataModel, Map<String, Object>) - Constructor for class es.upm.etsisi.cf4j.recommender.matrixFactorization.DirMF
-
Model constructor from a Map containing the model's hyper-parameters values.
- Discovery - Class in es.upm.etsisi.cf4j.qualityMeasure.recommendation
-
This class the averaged novelty of the recomendations.
- Discovery(Recommender, int) - Constructor for class es.upm.etsisi.cf4j.qualityMeasure.recommendation.Discovery
-
Constructor of Novelty
- Discovery(Recommender, Map<String, Object>) - Constructor for class es.upm.etsisi.cf4j.qualityMeasure.recommendation.Discovery
-
Constructor from a Map object with the quality measure parameters.
- Diversity - Class in es.upm.etsisi.cf4j.qualityMeasure.recommendation
-
This class the averaged diversity of the recomendations.
- Diversity(Recommender, int) - Constructor for class es.upm.etsisi.cf4j.qualityMeasure.recommendation.Diversity
-
Constructor of Diversity
- Diversity(Recommender, Map<String, Object>) - Constructor for class es.upm.etsisi.cf4j.qualityMeasure.recommendation.Diversity
-
Constructor from a Map object with the quality measure parameters.
- dotProduct(double[], double[]) - Static method in class es.upm.etsisi.cf4j.util.Maths
-
Dot product between two vectors
- dPrime - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.HPF
- draw() - Method in class es.upm.etsisi.cf4j.util.plot.Plot
-
Draws the plot into a JFrame
E
- EPSILON - Static variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.URP
- epsilonMinus - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.BNMF
-
Epsilon- parameters
- epsilonPlus - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.BNMF
-
Epsilon+ parameters
- equals(Object) - Method in class es.upm.etsisi.cf4j.data.types.DataSetEntry
- es.upm.etsisi.cf4j.data - package es.upm.etsisi.cf4j.data
-
This package contains data classes of CF4J.
- es.upm.etsisi.cf4j.data.types - package es.upm.etsisi.cf4j.data.types
-
This package contains types classes used by data objects of CF4J.
- es.upm.etsisi.cf4j.examples - package es.upm.etsisi.cf4j.examples
-
This package contains examples of CF4J usage.
- es.upm.etsisi.cf4j.examples.gridSearch - package es.upm.etsisi.cf4j.examples.gridSearch
-
This package contains examples showing how to use GridSearch tool of CF4J.
- es.upm.etsisi.cf4j.examples.plot - package es.upm.etsisi.cf4j.examples.plot
-
This package contains examples showing how to plot with CF4J
- es.upm.etsisi.cf4j.examples.recommender - package es.upm.etsisi.cf4j.examples.recommender
-
This package contains examples showing how to compare different Recommenders with CF4J.
- es.upm.etsisi.cf4j.qualityMeasure - package es.upm.etsisi.cf4j.qualityMeasure
-
Contains the implementation of different quality measures for collaborative filtering based recommender systems.
- es.upm.etsisi.cf4j.qualityMeasure.prediction - package es.upm.etsisi.cf4j.qualityMeasure.prediction
-
Contains the implementation of different quality measures oriented to predictions.
- es.upm.etsisi.cf4j.qualityMeasure.recommendation - package es.upm.etsisi.cf4j.qualityMeasure.recommendation
-
Contains the implementation of different quality measures oriented to recommendations.
- es.upm.etsisi.cf4j.recommender - package es.upm.etsisi.cf4j.recommender
-
This package contains the implementation of different collaborative filtering based recommenders.
- es.upm.etsisi.cf4j.recommender.knn - package es.upm.etsisi.cf4j.recommender.knn
-
This package contains the implementation of different knn based collaborative filtering recommenders.
- es.upm.etsisi.cf4j.recommender.knn.itemSimilarityMetric - package es.upm.etsisi.cf4j.recommender.knn.itemSimilarityMetric
-
This package contains different implementations of item-to-item similarity metrics used in the item-to-item knn based collaborative filtering algorithm.
- es.upm.etsisi.cf4j.recommender.knn.userSimilarityMetric - package es.upm.etsisi.cf4j.recommender.knn.userSimilarityMetric
-
This package contains different implementations of user-to-user similarity metric used in the user-to-user knn based collaborative filtering algorithm.
- es.upm.etsisi.cf4j.recommender.matrixFactorization - package es.upm.etsisi.cf4j.recommender.matrixFactorization
-
This package contains the implementation of different matrix factorization based collaborative filtering recommenders.
- es.upm.etsisi.cf4j.recommender.neural - package es.upm.etsisi.cf4j.recommender.neural
-
This package contains the implementation of different neural networks based collaborative filtering recommenders.
- es.upm.etsisi.cf4j.util - package es.upm.etsisi.cf4j.util
-
This package contains different utilities used by the CF4J.
- es.upm.etsisi.cf4j.util.optimization - package es.upm.etsisi.cf4j.util.optimization
-
This package includes optimization utils designed to tune recommenders' hyper-parameters.
- es.upm.etsisi.cf4j.util.plot - package es.upm.etsisi.cf4j.util.plot
-
This package includes plotting utils designed to analyze data of results obtained as consequence of collaborative filtering research.
- es.upm.etsisi.cf4j.util.process - package es.upm.etsisi.cf4j.util.process
-
This package includes processing utils designed to parallelize fitting processes.
- exec(Object[], Partible) - Static method in class es.upm.etsisi.cf4j.util.process.Parallelizer
-
Execs Partible for each object contained in the objects array.
- exec(Object[], Partible, int) - Static method in class es.upm.etsisi.cf4j.util.process.Parallelizer
-
Execs Partible for each object contained in the objects array.
- exportData(String) - Method in class es.upm.etsisi.cf4j.util.plot.Plot
-
Exports plot data into a CSV file
- exportData(String, boolean) - Method in class es.upm.etsisi.cf4j.util.plot.Plot
-
Exports plot data into a CSV file
- exportData(String, String) - Method in class es.upm.etsisi.cf4j.util.plot.Plot
-
Exports plot data into a CSV file
- exportData(String, String, boolean) - Method in class es.upm.etsisi.cf4j.util.plot.Plot
-
Exports plot data into a CSV file
- exportPlot(String) - Method in class es.upm.etsisi.cf4j.util.plot.Plot
-
Exports the plot to a PNG file
- exportResults(String) - Method in class es.upm.etsisi.cf4j.util.optimization.RandomSearch
-
Exports results of RandomSerach in csv format
- exportResults(String) - Method in class es.upm.etsisi.cf4j.util.optimization.RandomSearchCV
-
Exports results of RandomSerachCV in csv format
- exportResults(String, boolean) - Method in class es.upm.etsisi.cf4j.util.optimization.RandomSearch
-
Exports results of RandomSerach in csv format
- exportResults(String, boolean) - Method in class es.upm.etsisi.cf4j.util.optimization.RandomSearchCV
-
Exports results of RandomSerachCV in csv format
- exportResults(String, String) - Method in class es.upm.etsisi.cf4j.util.optimization.RandomSearch
-
Exports results of RandomSerach in csv format
- exportResults(String, String) - Method in class es.upm.etsisi.cf4j.util.optimization.RandomSearchCV
-
Exports results of RandomSerachCV in csv format
- exportResults(String, String, boolean) - Method in class es.upm.etsisi.cf4j.util.optimization.RandomSearch
-
Exports results of RandomSerach in csv format
- exportResults(String, String, boolean) - Method in class es.upm.etsisi.cf4j.util.optimization.RandomSearchCV
-
Exports results of RandomSerachCV in csv format
- exportToCSV(String, String) - Method in class es.upm.etsisi.cf4j.data.DataModel
-
Exports datamodel into a CSV for train ratings and other CSV for test ratings.
- exportToCSV(String, String, boolean) - Method in class es.upm.etsisi.cf4j.data.DataModel
-
Exports datamodel into a CSV for train ratings and other CSV for test ratings.
- exportToCSV(String, String, String) - Method in class es.upm.etsisi.cf4j.data.DataModel
-
Exports datamodel into a CSV for train ratings and other CSV for test ratings.
- exportToCSV(String, String, String, boolean) - Method in class es.upm.etsisi.cf4j.data.DataModel
-
Exports datamodel into a CSV for train ratings and other CSV for test ratings.
F
- F1 - Class in es.upm.etsisi.cf4j.qualityMeasure.recommendation
-
This class calculates the F1 score of the recommender system.
- F1(Recommender, int, double) - Constructor for class es.upm.etsisi.cf4j.qualityMeasure.recommendation.F1
-
Constructor
- F1(Recommender, Map<String, Object>) - Constructor for class es.upm.etsisi.cf4j.qualityMeasure.recommendation.F1
-
Constructor from a Map object with the quality measure parameters.
- FilmTrust() - Static method in class es.upm.etsisi.cf4j.data.BenchmarkDataModels
-
Loads a DataModel instance of FilmTrust dataset.
- find(int) - Method in class es.upm.etsisi.cf4j.data.types.SortedRatingList
-
Finds the position of an index
- findItem(int) - Method in class es.upm.etsisi.cf4j.data.User
-
Finds position of a user's rating given the index of the Item in the DataModel.
- findItemIndex(String) - Method in class es.upm.etsisi.cf4j.data.DataModel
-
Finds the itemIndex of an Item at the Items' array given its unique id.
- findTestItem(int) - Method in class es.upm.etsisi.cf4j.data.TestUser
-
Finds position of a user's test rating given the index of the TestItem in the DataModel.
- findTestItemIndex(String) - Method in class es.upm.etsisi.cf4j.data.DataModel
-
Finds the testItemIndex of a TestItem at the TestItem' array given its unique id.
- findTestUser(int) - Method in class es.upm.etsisi.cf4j.data.TestItem
-
Finds position of a rating that an test user has made to the test item given the index of the TestUser in the DataModel.
- findTestUserIndex(String) - Method in class es.upm.etsisi.cf4j.data.DataModel
-
Finds the testUserIndex of a TestUser at the TestUsers' array given his/her unique id.
- findTopN(double[], int) - Static method in class es.upm.etsisi.cf4j.util.Search
-
Returns the indexes of the biggest n elements of the values array.
- findUser(int) - Method in class es.upm.etsisi.cf4j.data.Item
-
Finds position of a rating that an user has made to the item given the index of the User in the DataModel.
- findUserIndex(String) - Method in class es.upm.etsisi.cf4j.data.DataModel
-
Finds the userIndex of a User at the Users' array given his/her unique id.
- fit() - Method in class es.upm.etsisi.cf4j.recommender.knn.ItemKNN
- fit() - Method in class es.upm.etsisi.cf4j.recommender.knn.UserKNN
- fit() - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.BeMF
- fit() - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.BiasedMF
- fit() - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.BNMF
- fit() - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.CLiMF
- fit() - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.DeepMF
- fit() - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.DirMF
- fit() - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.HPF
- fit() - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.NMF
- fit() - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.PMF
- fit() - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.SVDPlusPlus
- fit() - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.URP
- fit() - Method in class es.upm.etsisi.cf4j.recommender.neural.GMF
- fit() - Method in class es.upm.etsisi.cf4j.recommender.neural.MLP
- fit() - Method in class es.upm.etsisi.cf4j.recommender.neural.NCCF
- fit() - Method in class es.upm.etsisi.cf4j.recommender.neural.NeuMF
- fit() - Method in class es.upm.etsisi.cf4j.recommender.Recommender
-
Estimates model parameters given the hyper-parameters
- fit() - Method in class es.upm.etsisi.cf4j.util.optimization.RandomSearch
-
Performs grid search
- fit() - Method in class es.upm.etsisi.cf4j.util.optimization.RandomSearchCV
-
Performs the search
G
- gamma - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.BiasedMF
-
Learning rate
- gamma - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.BNMF
-
Gamma parameters
- gamma - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.CLiMF
-
Learning rate
- gamma - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.HPF
- gamma - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.PMF
-
Learning rate
- gamma - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.SVDPlusPlus
-
Learning rate hyper-parameter
- gamma - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.URP
-
Gamma parameter
- gammaRte - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.HPF
- gammaShp - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.HPF
- getAlpha() - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.BNMF
-
Get the alpha value
- getBackgroundColor() - Static method in class es.upm.etsisi.cf4j.util.plot.PlotSettings
-
Gets the plot's background color
- getBestParams() - Method in class es.upm.etsisi.cf4j.util.optimization.RandomSearch
-
Get the best result parameters.
- getBestParams() - Method in class es.upm.etsisi.cf4j.util.optimization.RandomSearchCV
-
Get the best result parameters.
- getBestParams(boolean) - Method in class es.upm.etsisi.cf4j.util.optimization.RandomSearch
-
Get the best result parameters.
- getBestParams(boolean) - Method in class es.upm.etsisi.cf4j.util.optimization.RandomSearchCV
-
Get the best result parameters.
- getBestParams(int, boolean) - Method in class es.upm.etsisi.cf4j.util.optimization.RandomSearch
-
Get the best result parameters.
- getBestParams(int, boolean) - Method in class es.upm.etsisi.cf4j.util.optimization.RandomSearchCV
-
Get the best result parameters.
- getBestScore() - Method in class es.upm.etsisi.cf4j.util.optimization.RandomSearch
-
Get the best result score.
- getBestScore() - Method in class es.upm.etsisi.cf4j.util.optimization.RandomSearchCV
-
Get the best result score.
- getBestScore(boolean) - Method in class es.upm.etsisi.cf4j.util.optimization.RandomSearch
-
Get the best result score.
- getBestScore(boolean) - Method in class es.upm.etsisi.cf4j.util.optimization.RandomSearchCV
-
Get the best result score.
- getBestScore(int, boolean) - Method in class es.upm.etsisi.cf4j.util.optimization.RandomSearch
-
Get the best result score.
- getBestScore(int, boolean) - Method in class es.upm.etsisi.cf4j.util.optimization.RandomSearchCV
-
Get the best result score.
- getBeta() - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.BNMF
-
Get the beta value
- getBoolean(String) - Method in class es.upm.etsisi.cf4j.data.DataBank
-
Gets an stored boolean inside the DataBank.
- getBooleanArray(String) - Method in class es.upm.etsisi.cf4j.data.DataBank
-
Gets an stored boolean array inside the DataBank.
- getClearInset() - Static method in class es.upm.etsisi.cf4j.util.plot.PlotSettings
-
Gets the inset for a clear border
- getColor(int) - Static method in class es.upm.etsisi.cf4j.util.plot.PlotSettings
-
Gets a color from the palette
- getColorPalette() - Static method in class es.upm.etsisi.cf4j.util.plot.PlotSettings
-
Gets the color palette
- getDataBank() - Method in class es.upm.etsisi.cf4j.data.DataModel
-
Gets the DataBank instance that stores heterogeneous information related to the DataModel.
- getDataBank() - Method in class es.upm.etsisi.cf4j.data.Item
-
Gets the DataBank instance that stores heterogeneous information related to the Item.
- getDataBank() - Method in class es.upm.etsisi.cf4j.data.User
-
Gets the DataBank instance that stores heterogeneous information related to the User.
- getDataContent(String, String) - Method in class es.upm.etsisi.cf4j.util.plot.ColumnPlot
- getDataContent(String, String) - Method in class es.upm.etsisi.cf4j.util.plot.HistogramPlot
- getDataContent(String, String) - Method in class es.upm.etsisi.cf4j.util.plot.LinePlot
- getDataContent(String, String) - Method in class es.upm.etsisi.cf4j.util.plot.Plot
-
Returns an String matrix with the content of the plot's data.
- getDataContent(String, String) - Method in class es.upm.etsisi.cf4j.util.plot.ScatterPlot
- getDataContent(String, String) - Method in class es.upm.etsisi.cf4j.util.plot.XYPlot
- getDataHeaders() - Method in class es.upm.etsisi.cf4j.util.plot.ColumnPlot
- getDataHeaders() - Method in class es.upm.etsisi.cf4j.util.plot.HistogramPlot
- getDataHeaders() - Method in class es.upm.etsisi.cf4j.util.plot.LinePlot
- getDataHeaders() - Method in class es.upm.etsisi.cf4j.util.plot.Plot
-
Returns an String array with the headers of the plot's data
- getDataHeaders() - Method in class es.upm.etsisi.cf4j.util.plot.ScatterPlot
- getDataHeaders() - Method in class es.upm.etsisi.cf4j.util.plot.XYPlot
- getDataModel() - Method in class es.upm.etsisi.cf4j.recommender.Recommender
-
Returns the DataModel instance
- getDevelopmentSetIterator() - Method in class es.upm.etsisi.cf4j.util.optimization.ParamsGrid
-
Returns the development set created from the grid parameters
- getDevelopmentSetIterator(boolean) - Method in class es.upm.etsisi.cf4j.util.optimization.ParamsGrid
-
Returns the development set created from the grid parameters
- getDevelopmentSetIterator(boolean, long) - Method in class es.upm.etsisi.cf4j.util.optimization.ParamsGrid
-
Returns the development set created from the grid parameters
- getDevelopmentSetSize() - Method in class es.upm.etsisi.cf4j.util.optimization.ParamsGrid
- getDouble(String) - Method in class es.upm.etsisi.cf4j.data.DataBank
-
Gets an stored double inside the DataBank.
- getDoubleArray(String) - Method in class es.upm.etsisi.cf4j.data.DataBank
-
Gets an stored double array inside the DataBank.
- getEpsilonMinus(int) - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.BNMF
-
Get the epsilon- vector of an item
- getEpsilonPlus(int) - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.BNMF
-
Get the epsilon+ vector of an item
- getGamma() - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.BiasedMF
-
Get the learning rate parameter of the model
- getGamma() - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.CLiMF
-
Get the learning rate parameter of the model
- getGamma() - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.PMF
-
Get the learning rate parameter of the model
- getGamma() - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.SVDPlusPlus
-
Getter of the gamma value.
- getGamma(int) - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.BNMF
-
Get the gamma vector of an user
- getGMFNumFactors() - Method in class es.upm.etsisi.cf4j.recommender.neural.NeuMF
-
Returns the number of latent factors of GMF net.
- getGralPlot() - Method in class es.upm.etsisi.cf4j.util.plot.ColumnPlot
- getGralPlot() - Method in class es.upm.etsisi.cf4j.util.plot.HistogramPlot
- getGralPlot() - Method in class es.upm.etsisi.cf4j.util.plot.LinePlot
- getGralPlot() - Method in class es.upm.etsisi.cf4j.util.plot.Plot
-
Gets an AbstractPlot using GRAL
- getGralPlot() - Method in class es.upm.etsisi.cf4j.util.plot.ScatterPlot
- getGralPlot() - Method in class es.upm.etsisi.cf4j.util.plot.XYPlot
- getH() - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.URP
-
Get the H value
- getHeight() - Static method in class es.upm.etsisi.cf4j.util.plot.PlotSettings
-
Get the plot height in pixels
- getId() - Method in class es.upm.etsisi.cf4j.data.Item
-
Returns the item unique identifier
- getId() - Method in class es.upm.etsisi.cf4j.data.User
-
Returns the user unique identifier
- getIndex() - Method in class es.upm.etsisi.cf4j.data.types.Rating
-
Gets the stored index.
- getIndex(int[], int) - Static method in class es.upm.etsisi.cf4j.util.Search
-
Gets efficiently the userIndex of an element in an array of integers
- getInt(String) - Method in class es.upm.etsisi.cf4j.data.DataBank
-
Gets an stored int inside the DataBank.
- getIntArray(String) - Method in class es.upm.etsisi.cf4j.data.DataBank
-
Gets an stored int array inside the DataBank.
- getItem(int) - Method in class es.upm.etsisi.cf4j.data.DataModel
-
Gets an Item by its index.
- getItemAt(int) - Method in class es.upm.etsisi.cf4j.data.User
-
Returns the index of the Item rated by the User at the given position.
- getItemBias(int) - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.BiasedMF
-
Get the bias of a item (bi)
- getItemFactors(int) - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.BiasedMF
-
Get the latent factors vector of an item (qi)
- getItemFactors(int) - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.BNMF
-
Get the latent factors vector of an item (bi)
- getItemFactors(int) - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.PMF
-
Get the latent factors vector of an item (qi)
- getItemIndex() - Method in class es.upm.etsisi.cf4j.data.Item
-
Return the item index inside the DataModel
- getItems() - Method in class es.upm.etsisi.cf4j.data.DataModel
-
Gets the array of Items.
- getLabelsFont() - Static method in class es.upm.etsisi.cf4j.util.plot.PlotSettings
-
Gets the labels font
- getLambda() - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.BiasedMF
-
Get the regularization parameter of the model
- getLambda() - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.CLiMF
-
Get the regularization parameter of the model
- getLambda() - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.PMF
-
Get the regularization parameter of the model
- getLambda() - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.SVDPlusPlus
-
Getter of the Lambda value.
- getLayers() - Method in class es.upm.etsisi.cf4j.recommender.neural.MLP
-
Returns net layers.
- getLayers() - Method in class es.upm.etsisi.cf4j.recommender.neural.NeuMF
-
Returns net layers.
- getLearningRate() - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.BeMF
-
Get the learning rate parameter of the model
- getLearningRate() - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.DirMF
-
Get the learning rate parameter of the model
- getLearningRate() - Method in class es.upm.etsisi.cf4j.recommender.neural.GMF
-
Returns learning rate.
- getLearningRate() - Method in class es.upm.etsisi.cf4j.recommender.neural.MLP
-
Returns learning rate.
- getLearningRate() - Method in class es.upm.etsisi.cf4j.recommender.neural.NeuMF
-
Returns learning rate.
- getLegendDistance() - Static method in class es.upm.etsisi.cf4j.util.plot.PlotSettings
-
Gets the legend distance
- getLegendFont() - Static method in class es.upm.etsisi.cf4j.util.plot.PlotSettings
-
Gets the legend font
- getLegendInset() - Static method in class es.upm.etsisi.cf4j.util.plot.PlotSettings
-
Gets the inset for the legend
- getMaxRating() - Method in class es.upm.etsisi.cf4j.data.DataModel
-
Gets the maximum (training) rating.
- getMaxRating() - Method in class es.upm.etsisi.cf4j.data.Item
-
Gets the maximum rating received by the item.
- getMaxRating() - Method in class es.upm.etsisi.cf4j.data.User
-
Gets the maximum rating of the user
- getMaxTestRating() - Method in class es.upm.etsisi.cf4j.data.DataModel
-
Gets the maximum test rating.
- getMaxTestRating() - Method in class es.upm.etsisi.cf4j.data.TestItem
-
Gets the maximum test rating received by the item
- getMaxTestRating() - Method in class es.upm.etsisi.cf4j.data.TestUser
-
Gets the maximum test rating of the user
- getMinRating() - Method in class es.upm.etsisi.cf4j.data.DataModel
-
Gets the minimum (training) rating.
- getMinRating() - Method in class es.upm.etsisi.cf4j.data.Item
-
Gets the minimum rating received by the item.
- getMinRating() - Method in class es.upm.etsisi.cf4j.data.User
-
Gets the minimum rating of the user
- getMinTestRating() - Method in class es.upm.etsisi.cf4j.data.DataModel
-
Gets the minimum test rating.
- getMinTestRating() - Method in class es.upm.etsisi.cf4j.data.TestItem
-
Gets the minimum test rating received by the item
- getMinTestRating() - Method in class es.upm.etsisi.cf4j.data.TestUser
-
Gets the minimum test rating of the user
- getMLPNumFactors() - Method in class es.upm.etsisi.cf4j.recommender.neural.NeuMF
-
Returns the number of latent factors of MLP net.
- getNumberOfItems() - Method in class es.upm.etsisi.cf4j.data.DataModel
-
Gets the number of items contained in the DataModel.
- getNumberOfRatings() - Method in class es.upm.etsisi.cf4j.data.DataModel
-
Return the number of ratings contained in the DataModel.
- getNumberOfRatings() - Method in interface es.upm.etsisi.cf4j.data.DataSet
-
This method indicates the number of (training) ratings.
- getNumberOfRatings() - Method in class es.upm.etsisi.cf4j.data.Item
-
Gets the number of ratings that the item have received
- getNumberOfRatings() - Method in class es.upm.etsisi.cf4j.data.ManualDataSet
- getNumberOfRatings() - Method in class es.upm.etsisi.cf4j.data.RandomSplitDataSet
- getNumberOfRatings() - Method in class es.upm.etsisi.cf4j.data.TrainTestFilesDataSet
- getNumberOfRatings() - Method in class es.upm.etsisi.cf4j.data.User
-
Gets the number of items rated by the user
- getNumberOfTestItems() - Method in class es.upm.etsisi.cf4j.data.DataModel
-
Gets the number of test items contained in the DataModel.
- getNumberOfTestRatings() - Method in class es.upm.etsisi.cf4j.data.DataModel
-
Return the number of test ratings contained in the DataModel.
- getNumberOfTestRatings() - Method in interface es.upm.etsisi.cf4j.data.DataSet
-
This method indicates the number of test ratings.
- getNumberOfTestRatings() - Method in class es.upm.etsisi.cf4j.data.ManualDataSet
- getNumberOfTestRatings() - Method in class es.upm.etsisi.cf4j.data.RandomSplitDataSet
- getNumberOfTestRatings() - Method in class es.upm.etsisi.cf4j.data.TestItem
-
Gets the number of test users that have rated the item.
- getNumberOfTestRatings() - Method in class es.upm.etsisi.cf4j.data.TestUser
-
Gets the number of test items rated by the user.
- getNumberOfTestRatings() - Method in class es.upm.etsisi.cf4j.data.TrainTestFilesDataSet
- getNumberOfTestUsers() - Method in class es.upm.etsisi.cf4j.data.DataModel
-
Gets the number of test users contained in the DataModel.
- getNumberOfUsers() - Method in class es.upm.etsisi.cf4j.data.DataModel
-
Gets the number of users contained in the DataModel.
- getNumEpochs() - Method in class es.upm.etsisi.cf4j.recommender.neural.GMF
-
Returns the number of epochs.
- getNumEpochs() - Method in class es.upm.etsisi.cf4j.recommender.neural.MLP
-
Returns the number of epochs.
- getNumEpochs() - Method in class es.upm.etsisi.cf4j.recommender.neural.NCCF
-
Returns the number of epochs.
- getNumEpochs() - Method in class es.upm.etsisi.cf4j.recommender.neural.NeuMF
-
Returns the number of epochs.
- getNumFactors() - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.BeMF
-
Get the number of factors of the model
- getNumFactors() - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.BiasedMF
-
Get the number of factors of the model
- getNumFactors() - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.BNMF
-
Get the number of factors of the model
- getNumFactors() - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.CLiMF
-
Get the number of factors of the model
- getNumFactors() - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.DirMF
-
Get the number of factors of the model
- getNumFactors() - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.HPF
-
Get the number of factors of the model
- getNumFactors() - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.NMF
-
Get the number of factors of the model
- getNumFactors() - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.PMF
-
Get the number of factors of the model
- getNumFactors() - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.SVDPlusPlus
-
Number of factors used in this recommender.
- getNumFactors() - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.URP
-
Get the number of factors of the model
- getNumFactors() - Method in class es.upm.etsisi.cf4j.recommender.neural.GMF
-
Returns the number of latent factors.
- getNumFactors() - Method in class es.upm.etsisi.cf4j.recommender.neural.MLP
-
Returns the number of latent factors.
- getNumIters() - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.BeMF
-
Get the number of iterations
- getNumIters() - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.BiasedMF
-
Get the number of iterations
- getNumIters() - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.BNMF
-
Get the number of iterations
- getNumIters() - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.CLiMF
-
Get the number of iterations
- getNumIters() - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.DirMF
-
Get the number of iterations
- getNumIters() - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.HPF
-
Get the number of iterations
- getNumIters() - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.NMF
-
Get the number of iterations
- getNumIters() - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.PMF
-
Get the number of iterations
- getNumIters() - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.SVDPlusPlus
-
Number of iterations used in this recommender.
- getNumIters() - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.URP
-
Get the number of iterations
- getParamsName() - Method in class es.upm.etsisi.cf4j.util.optimization.ParamsGrid
-
Returns String Array with the name of the params
- getPointsFont() - Static method in class es.upm.etsisi.cf4j.util.plot.PlotSettings
-
Gets the points font
- getPredictionProbabilityDistribution(int, int) - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.URP
-
Returns the probability distribution of a prediction.
- getR() - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.BNMF
-
Get the r value
- getRating() - Method in class es.upm.etsisi.cf4j.data.types.Rating
-
Gets the rating value.
- getRatingAt(int) - Method in class es.upm.etsisi.cf4j.data.Item
-
Returns the rating of the user to the item at the pos position
- getRatingAt(int) - Method in class es.upm.etsisi.cf4j.data.User
-
Returns the rating of the user to the item at the pos position
- getRatingAverage() - Method in class es.upm.etsisi.cf4j.data.DataModel
-
Gets the average of (training) ratings.
- getRatingAverage() - Method in class es.upm.etsisi.cf4j.data.Item
-
Gets the average value of ratings
- getRatingAverage() - Method in class es.upm.etsisi.cf4j.data.User
-
Gets the average value of ratings
- getRatings() - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.BeMF
-
Get the discrete ratings values
- getRatings() - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.DirMF
-
Get the discrete ratings values
- getRatings() - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.URP
-
Get the plausible ratings
- getRatingsIterator() - Method in interface es.upm.etsisi.cf4j.data.DataSet
-
This method generates an iterator to navigate through the raw ratings stored in DataSetEntries.
- getRatingsIterator() - Method in class es.upm.etsisi.cf4j.data.ManualDataSet
- getRatingsIterator() - Method in class es.upm.etsisi.cf4j.data.RandomSplitDataSet
- getRatingsIterator() - Method in class es.upm.etsisi.cf4j.data.TrainTestFilesDataSet
- getRegularization() - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.BeMF
-
Get the regularization parameter of the model
- getRegularization() - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.DirMF
-
Get the regularization parameter of the model
- getResults() - Method in class es.upm.etsisi.cf4j.util.optimization.RandomSearch
-
This method is required for cross validation (CV).
- getScore() - Method in class es.upm.etsisi.cf4j.qualityMeasure.QualityMeasure
-
Computes the quality measure of the recommender
- getScore(int) - Method in class es.upm.etsisi.cf4j.qualityMeasure.QualityMeasure
-
Computes the quality measure of the recommender
- getScore(TestUser, double[]) - Method in class es.upm.etsisi.cf4j.qualityMeasure.prediction.Coverage
- getScore(TestUser, double[]) - Method in class es.upm.etsisi.cf4j.qualityMeasure.prediction.MAE
- getScore(TestUser, double[]) - Method in class es.upm.etsisi.cf4j.qualityMeasure.prediction.Max
- getScore(TestUser, double[]) - Method in class es.upm.etsisi.cf4j.qualityMeasure.prediction.MSE
- getScore(TestUser, double[]) - Method in class es.upm.etsisi.cf4j.qualityMeasure.prediction.MSLE
- getScore(TestUser, double[]) - Method in class es.upm.etsisi.cf4j.qualityMeasure.prediction.Perfect
- getScore(TestUser, double[]) - Method in class es.upm.etsisi.cf4j.qualityMeasure.prediction.R2
- getScore(TestUser, double[]) - Method in class es.upm.etsisi.cf4j.qualityMeasure.prediction.RMSE
- getScore(TestUser, double[]) - Method in class es.upm.etsisi.cf4j.qualityMeasure.QualityMeasure
-
Computes the quality measure score for a TestUser given the predictions for his/her test ratings
- getScore(TestUser, double[]) - Method in class es.upm.etsisi.cf4j.qualityMeasure.recommendation.Discovery
- getScore(TestUser, double[]) - Method in class es.upm.etsisi.cf4j.qualityMeasure.recommendation.Diversity
- getScore(TestUser, double[]) - Method in class es.upm.etsisi.cf4j.qualityMeasure.recommendation.F1
- getScore(TestUser, double[]) - Method in class es.upm.etsisi.cf4j.qualityMeasure.recommendation.NDCG
- getScore(TestUser, double[]) - Method in class es.upm.etsisi.cf4j.qualityMeasure.recommendation.Novelty
- getScore(TestUser, double[]) - Method in class es.upm.etsisi.cf4j.qualityMeasure.recommendation.Precision
- getScore(TestUser, double[]) - Method in class es.upm.etsisi.cf4j.qualityMeasure.recommendation.Recall
- getSimilarities(int) - Method in class es.upm.etsisi.cf4j.recommender.knn.itemSimilarityMetric.ItemSimilarityMetric
-
Returns the similarity array of an item.
- getSimilarities(int) - Method in class es.upm.etsisi.cf4j.recommender.knn.userSimilarityMetric.UserSimilarityMetric
-
Returns the similarity array of an user.
- getString(String) - Method in class es.upm.etsisi.cf4j.data.DataBank
-
Gets an stored String inside the DataBank.
- getStringArray(String) - Method in class es.upm.etsisi.cf4j.data.DataBank
-
Gets an stored String array inside the DataBank.
- getTestItem(int) - Method in class es.upm.etsisi.cf4j.data.DataModel
-
Gets a TestItem by its index.
- getTestItemAt(int) - Method in class es.upm.etsisi.cf4j.data.TestUser
-
Returns the index of the TestItem rated by the TestUser at the given position.
- getTestItemIndex() - Method in class es.upm.etsisi.cf4j.data.TestItem
-
Returns the test item index inside the DataModel
- getTestItems() - Method in class es.upm.etsisi.cf4j.data.DataModel
-
Gets the array of TestItems.
- getTestRatingAt(int) - Method in class es.upm.etsisi.cf4j.data.TestItem
-
Returns the test rating of the test user to the test item at the pos position
- getTestRatingAt(int) - Method in class es.upm.etsisi.cf4j.data.TestUser
-
Returns the test rating of the user to the test item at the pos position
- getTestRatingAverage() - Method in class es.upm.etsisi.cf4j.data.DataModel
-
Gets the average of test ratings.
- getTestRatingAverage() - Method in class es.upm.etsisi.cf4j.data.TestItem
-
Gets the average value of test ratings
- getTestRatingAverage() - Method in class es.upm.etsisi.cf4j.data.TestUser
-
Gets the average value of test ratings
- getTestRatingsIterator() - Method in interface es.upm.etsisi.cf4j.data.DataSet
-
This method generates an iterator to navigate through the raw test ratings stored in DataSetEntries.
- getTestRatingsIterator() - Method in class es.upm.etsisi.cf4j.data.ManualDataSet
- getTestRatingsIterator() - Method in class es.upm.etsisi.cf4j.data.RandomSplitDataSet
- getTestRatingsIterator() - Method in class es.upm.etsisi.cf4j.data.TrainTestFilesDataSet
- getTestUser(int) - Method in class es.upm.etsisi.cf4j.data.DataModel
-
Gets a TestUser by his/her test index.
- getTestUserAt(int) - Method in class es.upm.etsisi.cf4j.data.TestItem
-
Returns the index of the TestUser that have test rated the TestItem at the given position
- getTestUserIndex() - Method in class es.upm.etsisi.cf4j.data.TestUser
-
Returns the test user index inside the DataModel
- getTestUsers() - Method in class es.upm.etsisi.cf4j.data.DataModel
-
Gets the array of TestUsers.
- getTicksFont() - Static method in class es.upm.etsisi.cf4j.util.plot.PlotSettings
-
Gets the ticks font
- GettingStartedExample - Class in es.upm.etsisi.cf4j.examples
-
In this example we analyze how the Mean Squared Error (MSE) varies according to the value of the regularization term in Probabilistic Matrix Factorization (PMF).
- GettingStartedExample() - Constructor for class es.upm.etsisi.cf4j.examples.GettingStartedExample
- getUser(int) - Method in class es.upm.etsisi.cf4j.data.DataModel
-
Gets an User by his/her index.
- getUserAt(int) - Method in class es.upm.etsisi.cf4j.data.Item
-
Returns the index of the User that have rated the Item at the given position
- getUserBias(int) - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.BiasedMF
-
Get the bias of a user (bu)
- getUserFactors(int) - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.BiasedMF
-
Get the latent factors vector of a user (pu)
- getUserFactors(int) - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.BNMF
-
Get the latent factors vector of a user (au)
- getUserFactors(int) - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.PMF
-
Get the latent factors vector of a user (pu)
- getUserIndex() - Method in class es.upm.etsisi.cf4j.data.User
-
Return the user index inside the DataModel
- getUsers() - Method in class es.upm.etsisi.cf4j.data.DataModel
-
Gets the array of Users.
- getWidth() - Static method in class es.upm.etsisi.cf4j.util.plot.PlotSettings
-
Get plot with in pixels
- getxAxisInset() - Static method in class es.upm.etsisi.cf4j.util.plot.PlotSettings
-
Gets the inset for the x axis
- getxAxisLabelDistance() - Static method in class es.upm.etsisi.cf4j.util.plot.PlotSettings
-
Gets the label distance in the x axis
- getyAxisInset() - Static method in class es.upm.etsisi.cf4j.util.plot.PlotSettings
-
Gets the inset for the y axis
- getyAxisLabelDistance() - Static method in class es.upm.etsisi.cf4j.util.plot.PlotSettings
-
Gets the label distance in the y axis
- GMF - Class in es.upm.etsisi.cf4j.recommender.neural
-
Implements He, X., Liao, L., Zhang, H., Nie, L., Hu, X., & Chua, T.
- GMF(DataModel, int, int, double) - Constructor for class es.upm.etsisi.cf4j.recommender.neural.GMF
-
Model constructor
- GMF(DataModel, int, int, double, long) - Constructor for class es.upm.etsisi.cf4j.recommender.neural.GMF
-
Model constructor
- GMF(DataModel, Map<String, Object>) - Constructor for class es.upm.etsisi.cf4j.recommender.neural.GMF
-
Model constructor from a Map containing the model's hyper-parameters values.
- GridSearch - Class in es.upm.etsisi.cf4j.util.optimization
-
Utility class to performs a grid search over a Recommender instance.
- GridSearch(DataModel, ParamsGrid, Class<? extends Recommender>, Class<? extends QualityMeasure>) - Constructor for class es.upm.etsisi.cf4j.util.optimization.GridSearch
-
GridSearch constructor
- GridSearch(DataModel, ParamsGrid, Class<? extends Recommender>, Class<? extends QualityMeasure>[]) - Constructor for class es.upm.etsisi.cf4j.util.optimization.GridSearch
-
GridSearch constructor
- GridSearch(DataModel, ParamsGrid, Class<? extends Recommender>, Class<? extends QualityMeasure>[], Map<String, Object>[]) - Constructor for class es.upm.etsisi.cf4j.util.optimization.GridSearch
-
GridSearch constructor
- GridSearch(DataModel, ParamsGrid, Class<? extends Recommender>, Class<? extends QualityMeasure>, Map<String, Object>) - Constructor for class es.upm.etsisi.cf4j.util.optimization.GridSearch
-
GridSearch constructor
- GridSearchCV - Class in es.upm.etsisi.cf4j.util.optimization
-
Utility class to performs a grid search over a Recommender instance.
- GridSearchCV(DataModel, ParamsGrid, Class<? extends Recommender>, Class<? extends QualityMeasure>[], int) - Constructor for class es.upm.etsisi.cf4j.util.optimization.GridSearchCV
-
GridSearchCV constructor
- GridSearchCV(DataModel, ParamsGrid, Class<? extends Recommender>, Class<? extends QualityMeasure>[], int, long) - Constructor for class es.upm.etsisi.cf4j.util.optimization.GridSearchCV
-
GridSearchCV constructor
- GridSearchCV(DataModel, ParamsGrid, Class<? extends Recommender>, Class<? extends QualityMeasure>[], Map<String, Object>[], int) - Constructor for class es.upm.etsisi.cf4j.util.optimization.GridSearchCV
-
GridSearchCV constructor
- GridSearchCV(DataModel, ParamsGrid, Class<? extends Recommender>, Class<? extends QualityMeasure>[], Map<String, Object>[], int, long) - Constructor for class es.upm.etsisi.cf4j.util.optimization.GridSearchCV
-
GridSearchCV constructor
- GridSearchCV(DataModel, ParamsGrid, Class<? extends Recommender>, Class<? extends QualityMeasure>, int) - Constructor for class es.upm.etsisi.cf4j.util.optimization.GridSearchCV
-
GridSearchCV constructor
- GridSearchCV(DataModel, ParamsGrid, Class<? extends Recommender>, Class<? extends QualityMeasure>, int, long) - Constructor for class es.upm.etsisi.cf4j.util.optimization.GridSearchCV
-
GridSearchCV constructor
- GridSearchCV(DataModel, ParamsGrid, Class<? extends Recommender>, Class<? extends QualityMeasure>, Map<String, Object>, int) - Constructor for class es.upm.etsisi.cf4j.util.optimization.GridSearchCV
-
GridSearchCV constructor
- GridSearchCV(DataModel, ParamsGrid, Class<? extends Recommender>, Class<? extends QualityMeasure>, Map<String, Object>, int, long) - Constructor for class es.upm.etsisi.cf4j.util.optimization.GridSearchCV
-
GridSearchCV constructor
H
- h - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.NMF
-
Item factors
- H - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.URP
-
Heuristic factor to control number of iterations during E-Step
- hashCode() - Method in class es.upm.etsisi.cf4j.data.types.DataSetEntry
- HistogramPlot - Class in es.upm.etsisi.cf4j.util.plot
-
Implements a histogram plot.
- HistogramPlot(String, int) - Constructor for class es.upm.etsisi.cf4j.util.plot.HistogramPlot
-
Creates a new HistogramPlot
- HistogramPlotExample - Class in es.upm.etsisi.cf4j.examples.plot
-
In this example we analyze the average rating of each item that belongs to MovieLens 1M dataset.
- HistogramPlotExample() - Constructor for class es.upm.etsisi.cf4j.examples.plot.HistogramPlotExample
- HPF - Class in es.upm.etsisi.cf4j.recommender.matrixFactorization
-
Implements Gopalan, P., Hofman, J.
- HPF(DataModel, int, int) - Constructor for class es.upm.etsisi.cf4j.recommender.matrixFactorization.HPF
-
Models constructor
- HPF(DataModel, int, int, double, double, double, double, double, double) - Constructor for class es.upm.etsisi.cf4j.recommender.matrixFactorization.HPF
-
Models constructor
- HPF(DataModel, int, int, double, double, double, double, double, double, long) - Constructor for class es.upm.etsisi.cf4j.recommender.matrixFactorization.HPF
-
Models constructor
- HPF(DataModel, int, int, long) - Constructor for class es.upm.etsisi.cf4j.recommender.matrixFactorization.HPF
-
Models constructor
- HPF(DataModel, Map<String, Object>) - Constructor for class es.upm.etsisi.cf4j.recommender.matrixFactorization.HPF
-
Model constructor from a Map containing the model's hyper-parameters values.
I
- id - Variable in class es.upm.etsisi.cf4j.data.Item
-
Item unique identifier
- id - Variable in class es.upm.etsisi.cf4j.data.User
-
User unique identifier
- Item - Class in es.upm.etsisi.cf4j.data
-
Defines a composition of an Item.
- Item(String, int) - Constructor for class es.upm.etsisi.cf4j.data.Item
-
Creates a new instance of an item.
- itemId - Variable in class es.upm.etsisi.cf4j.data.types.DataSetEntry
-
Identifier of the item rated by the user
- itemIndex - Variable in class es.upm.etsisi.cf4j.data.Item
-
Item index in the DataModel
- ItemKNN - Class in es.upm.etsisi.cf4j.recommender.knn
-
Implements item-to-item KNN based collaborative filtering
- ItemKNN(DataModel, int, ItemSimilarityMetric, ItemKNN.AggregationApproach) - Constructor for class es.upm.etsisi.cf4j.recommender.knn.ItemKNN
-
Recommender constructor
- ItemKNN(DataModel, Map<String, Object>) - Constructor for class es.upm.etsisi.cf4j.recommender.knn.ItemKNN
-
Recommender constructor from a Map containing the recommender's hyper-parameters values.
- ItemKNN.AggregationApproach - Enum in es.upm.etsisi.cf4j.recommender.knn
-
Available aggregation approaches to merge k-nearest neighbors ratings
- ItemKnnComparison - Class in es.upm.etsisi.cf4j.examples.recommender
-
In this example we compare the MSLE and nDCG quality measures scores for different similarity metrics applied to item-to-item knn based collaborative filtering.
- ItemKnnComparison() - Constructor for class es.upm.etsisi.cf4j.examples.recommender.ItemKnnComparison
- ItemSimilarityMetric - Class in es.upm.etsisi.cf4j.recommender.knn.itemSimilarityMetric
-
This class process the similarity measure between two items.
- ItemSimilarityMetric() - Constructor for class es.upm.etsisi.cf4j.recommender.knn.itemSimilarityMetric.ItemSimilarityMetric
- itemsRatings - Variable in class es.upm.etsisi.cf4j.data.User
-
Items rated by the user
J
- Jaccard - Class in es.upm.etsisi.cf4j.recommender.knn.itemSimilarityMetric
-
This class Implements Jaccard Index as CF similarity metric for the items.
- Jaccard - Class in es.upm.etsisi.cf4j.recommender.knn.userSimilarityMetric
-
Implements traditional Jaccard Index as CF similarity metric.
- Jaccard() - Constructor for class es.upm.etsisi.cf4j.recommender.knn.itemSimilarityMetric.Jaccard
- Jaccard() - Constructor for class es.upm.etsisi.cf4j.recommender.knn.userSimilarityMetric.Jaccard
- Jester() - Static method in class es.upm.etsisi.cf4j.data.BenchmarkDataModels
-
Loads a DataModel instance of Jester (Dataset 3) dataset.
- JMSD - Class in es.upm.etsisi.cf4j.recommender.knn.itemSimilarityMetric
-
This class implements JMSD as the similarity metric for the items.
- JMSD - Class in es.upm.etsisi.cf4j.recommender.knn.userSimilarityMetric
-
Implements the following CF similarity metric: Bobadilla, J., Serradilla, F., & Bernal, J
- JMSD() - Constructor for class es.upm.etsisi.cf4j.recommender.knn.itemSimilarityMetric.JMSD
- JMSD() - Constructor for class es.upm.etsisi.cf4j.recommender.knn.userSimilarityMetric.JMSD
K
- kappaRte - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.HPF
- kappaShp - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.HPF
L
- lambda - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.BiasedMF
-
Regularization parameter
- lambda - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.CLiMF
-
Regularization
- lambda - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.HPF
- lambda - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.PMF
-
Regularization parameter
- lambda - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.SVDPlusPlus
-
Regularization hyper-parameter
- lambdaRte - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.HPF
- lambdaShp - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.HPF
- layers - Variable in class es.upm.etsisi.cf4j.recommender.neural.MLP
-
Array of layers neurons
- layers - Variable in class es.upm.etsisi.cf4j.recommender.neural.NeuMF
-
Array of layers neurons
- learningRate - Variable in class es.upm.etsisi.cf4j.recommender.neural.GMF
-
Learning Rate
- learningRate - Variable in class es.upm.etsisi.cf4j.recommender.neural.MLP
-
Learning rate
- learningRate - Variable in class es.upm.etsisi.cf4j.recommender.neural.NeuMF
-
Learning Rate
- LibimSeTi() - Static method in class es.upm.etsisi.cf4j.data.BenchmarkDataModels
-
Loads a DataModel instance of LibimSeTi dataset.
- LinePlot - Class in es.upm.etsisi.cf4j.util.plot
-
Implements a LinePlot.
- LinePlot(double[], String, String) - Constructor for class es.upm.etsisi.cf4j.util.plot.LinePlot
-
Creates a new LinePlot
- LinePlot(double[], String, String, boolean) - Constructor for class es.upm.etsisi.cf4j.util.plot.LinePlot
-
Creates a new LinePlot
- LinePlot(int[], String, String) - Constructor for class es.upm.etsisi.cf4j.util.plot.LinePlot
-
Creates a new LinePlot
- LinePlot(int[], String, String, boolean) - Constructor for class es.upm.etsisi.cf4j.util.plot.LinePlot
-
Creates a new LinePlot
- LinePlotExample - Class in es.upm.etsisi.cf4j.examples.plot
-
In this example we compare the F1 score of the recommendations performed by PMF and NMF recommenders.
- LinePlotExample() - Constructor for class es.upm.etsisi.cf4j.examples.plot.LinePlotExample
- linespace(double, double, int) - Static method in class es.upm.etsisi.cf4j.util.Maths
-
Returns num evenly spaced samples.
- linespace(double, double, int, boolean) - Static method in class es.upm.etsisi.cf4j.util.Maths
-
Returns num evenly spaced samples.
- linespace(double, int) - Static method in class es.upm.etsisi.cf4j.util.Maths
-
Returns num evenly spaced samples.
- load(String) - Static method in class es.upm.etsisi.cf4j.data.DataModel
-
Loads a DataModel from a previously serialized file (see save() method).
- log(double, double) - Static method in class es.upm.etsisi.cf4j.util.Maths
-
Returns the log in an specific base
- logistic(double) - Static method in class es.upm.etsisi.cf4j.util.Maths
-
Returns the logistic function g(x)
- logspace(double, double, int) - Static method in class es.upm.etsisi.cf4j.util.Maths
-
Return numbers spaced evenly on a log scale.
- logspace(double, double, int, boolean) - Static method in class es.upm.etsisi.cf4j.util.Maths
-
Return numbers spaced evenly on a log scale.
- logspace(double, double, int, boolean, double) - Static method in class es.upm.etsisi.cf4j.util.Maths
-
Return numbers spaced evenly on a log scale.
- logspace(double, double, int, double) - Static method in class es.upm.etsisi.cf4j.util.Maths
-
Return numbers spaced evenly on a log scale.
M
- MAE - Class in es.upm.etsisi.cf4j.qualityMeasure.prediction
-
This class calculates the Mean Absolute Error (MAE) between the predictions and the test ratings.
- MAE(Recommender) - Constructor for class es.upm.etsisi.cf4j.qualityMeasure.prediction.MAE
-
Constructor of the class which basically calls the father's one
- main(String[]) - Static method in class es.upm.etsisi.cf4j.examples.GettingStartedExample
- main(String[]) - Static method in class es.upm.etsisi.cf4j.examples.gridSearch.BiasedMFGridSearch
- main(String[]) - Static method in class es.upm.etsisi.cf4j.examples.gridSearch.PMFRandomSearchCV
- main(String[]) - Static method in class es.upm.etsisi.cf4j.examples.gridSearch.UserKNNGridSearch
- main(String[]) - Static method in class es.upm.etsisi.cf4j.examples.plot.ColumnPlotExample
- main(String[]) - Static method in class es.upm.etsisi.cf4j.examples.plot.HistogramPlotExample
- main(String[]) - Static method in class es.upm.etsisi.cf4j.examples.plot.LinePlotExample
- main(String[]) - Static method in class es.upm.etsisi.cf4j.examples.plot.ScatterPlotExample
- main(String[]) - Static method in class es.upm.etsisi.cf4j.examples.plot.XYPlotExample
- main(String[]) - Static method in class es.upm.etsisi.cf4j.examples.recommender.ItemKnnComparison
- main(String[]) - Static method in class es.upm.etsisi.cf4j.examples.recommender.MatrixFactorizationComparison
- main(String[]) - Static method in class es.upm.etsisi.cf4j.examples.recommender.UserKnnComparison
- ManualDataSet - Class in es.upm.etsisi.cf4j.data
- ManualDataSet(List<DataSetEntry>, double, Long) - Constructor for class es.upm.etsisi.cf4j.data.ManualDataSet
-
Method separates the given data set entries into train and test rating depending on the trainPercentage.
- ManualDataSet(List<DataSetEntry>, List<DataSetEntry>) - Constructor for class es.upm.etsisi.cf4j.data.ManualDataSet
-
Method to specify the train and test entries.
- Maths - Class in es.upm.etsisi.cf4j.util
-
This class contains useful math methods.
- Maths() - Constructor for class es.upm.etsisi.cf4j.util.Maths
- MatrixFactorizationComparison - Class in es.upm.etsisi.cf4j.examples.recommender
-
In this example we compare the RMSE score for different matrix factorization models varying the number of latent factors.
- MatrixFactorizationComparison() - Constructor for class es.upm.etsisi.cf4j.examples.recommender.MatrixFactorizationComparison
- max - Variable in class es.upm.etsisi.cf4j.data.Item
-
Maximum (training) rating value
- max - Variable in class es.upm.etsisi.cf4j.data.User
-
Maximum (training) rating value
- Max - Class in es.upm.etsisi.cf4j.qualityMeasure.prediction
-
This class calculates the averaged maximum prediction absolute error in a the prediction of a test rating for each test user.
- Max(Recommender) - Constructor for class es.upm.etsisi.cf4j.qualityMeasure.prediction.Max
-
Constructor of the class which basically calls the father's one.
- maxTest - Variable in class es.upm.etsisi.cf4j.data.TestItem
-
Maximum test rating value
- maxTest - Variable in class es.upm.etsisi.cf4j.data.TestUser
-
Maximum test rating value
- MEAN - es.upm.etsisi.cf4j.recommender.knn.ItemKNN.AggregationApproach
- MEAN - es.upm.etsisi.cf4j.recommender.knn.UserKNN.AggregationApproach
- metric - Variable in class es.upm.etsisi.cf4j.recommender.knn.ItemKNN
-
Similarity metric to compute the similarity between two items
- metric - Variable in class es.upm.etsisi.cf4j.recommender.knn.UserKNN
-
Similarity metric to compute the similarity between two users
- min - Variable in class es.upm.etsisi.cf4j.data.Item
-
Minimum (training) rating value
- min - Variable in class es.upm.etsisi.cf4j.data.User
-
Minimum (training) rating value
- minTest - Variable in class es.upm.etsisi.cf4j.data.TestItem
-
Minimum test rating value
- minTest - Variable in class es.upm.etsisi.cf4j.data.TestUser
-
Minimum test rating value
- MLP - Class in es.upm.etsisi.cf4j.recommender.neural
-
Implements He, X., Liao, L., Zhang, H., Nie, L., Hu, X., & Chua, T.
- MLP(DataModel, int, double) - Constructor for class es.upm.etsisi.cf4j.recommender.neural.MLP
-
Model constructor
- MLP(DataModel, int, double, int[]) - Constructor for class es.upm.etsisi.cf4j.recommender.neural.MLP
-
Model constructor
- MLP(DataModel, int, double, long) - Constructor for class es.upm.etsisi.cf4j.recommender.neural.MLP
-
Model constructor
- MLP(DataModel, int, int, double) - Constructor for class es.upm.etsisi.cf4j.recommender.neural.MLP
-
Model constructor
- MLP(DataModel, int, int, double, int[]) - Constructor for class es.upm.etsisi.cf4j.recommender.neural.MLP
-
Model constructor
- MLP(DataModel, int, int, double, int[], long) - Constructor for class es.upm.etsisi.cf4j.recommender.neural.MLP
-
Model constructor
- MLP(DataModel, int, int, double, long) - Constructor for class es.upm.etsisi.cf4j.recommender.neural.MLP
-
Model constructor
- MLP(DataModel, Map<String, Object>) - Constructor for class es.upm.etsisi.cf4j.recommender.neural.MLP
-
Model constructor from a Map containing the model's hyper-parameters values.
- MovieLens100K() - Static method in class es.upm.etsisi.cf4j.data.BenchmarkDataModels
-
Loads a DataModel instance of MovieLens 100K dataset.
- MovieLens10M() - Static method in class es.upm.etsisi.cf4j.data.BenchmarkDataModels
-
Loads a DataModel instance of MovieLens 1M dataset.
- MovieLens1M() - Static method in class es.upm.etsisi.cf4j.data.BenchmarkDataModels
-
Loads a DataModel instance of MovieLens 1M dataset.
- MSD - Class in es.upm.etsisi.cf4j.recommender.knn.itemSimilarityMetric
-
Implements traditional MSD as CF similarity metric for items.
- MSD - Class in es.upm.etsisi.cf4j.recommender.knn.userSimilarityMetric
-
Implements traditional MSD as CF similarity metric.
- MSD() - Constructor for class es.upm.etsisi.cf4j.recommender.knn.itemSimilarityMetric.MSD
- MSD() - Constructor for class es.upm.etsisi.cf4j.recommender.knn.userSimilarityMetric.MSD
- MSE - Class in es.upm.etsisi.cf4j.qualityMeasure.prediction
-
This class calculates the Mean Squared Error (MSE) between the predictions and the test ratings.
- MSE(Recommender) - Constructor for class es.upm.etsisi.cf4j.qualityMeasure.prediction.MSE
-
Constructor of the class which basically calls the father's one
- MSLE - Class in es.upm.etsisi.cf4j.qualityMeasure.prediction
-
This class calculates the Mean Squared Logarithmic Error (MSLE) between the predictions and the test ratings.
- MSLE(Recommender) - Constructor for class es.upm.etsisi.cf4j.qualityMeasure.prediction.MSLE
-
Constructor of the class which basically calls the father's one
- MyAnimeList() - Static method in class es.upm.etsisi.cf4j.data.BenchmarkDataModels
-
Loads a DataModel instance of MyAnimeList dataset.
N
- NCCF - Class in es.upm.etsisi.cf4j.recommender.neural
-
Implements short method of Bobadilla, J., Ortega, F., Gutiérrez, A., & Alonso, S. (2020).
- NCCF(DataModel, int) - Constructor for class es.upm.etsisi.cf4j.recommender.neural.NCCF
-
Model constructor
- NCCF(DataModel, int, long) - Constructor for class es.upm.etsisi.cf4j.recommender.neural.NCCF
-
Model constructor
- NCCF(DataModel, Map<String, Object>) - Constructor for class es.upm.etsisi.cf4j.recommender.neural.NCCF
-
Model constructor from a Map containing the model's hyper-parameters values.
- NDCG - Class in es.upm.etsisi.cf4j.qualityMeasure.recommendation
-
This class calculates the Normalized Discounted Cumulative Gain (nDCG) of the recommendations performed by a Recommender.
- NDCG(Recommender, int) - Constructor for class es.upm.etsisi.cf4j.qualityMeasure.recommendation.NDCG
-
Constructor
- NDCG(Recommender, Map<String, Object>) - Constructor for class es.upm.etsisi.cf4j.qualityMeasure.recommendation.NDCG
-
Constructor from a Map object with the quality measure parameters.
- neighbors - Variable in class es.upm.etsisi.cf4j.recommender.knn.ItemKNN
-
Contains the neighbors indexes of each item
- neighbors - Variable in class es.upm.etsisi.cf4j.recommender.knn.UserKNN
-
Contains the neighbors indexes of each user
- NetflixPrize() - Static method in class es.upm.etsisi.cf4j.data.BenchmarkDataModels
-
Loads a DataModel instance of Netflix Prize dataset.
- NeuMF - Class in es.upm.etsisi.cf4j.recommender.neural
-
Implements He, X., Liao, L., Zhang, H., Nie, L., Hu, X., & Chua, T.
- NeuMF(DataModel, int, double) - Constructor for class es.upm.etsisi.cf4j.recommender.neural.NeuMF
-
Model constructor
- NeuMF(DataModel, int, double, int[]) - Constructor for class es.upm.etsisi.cf4j.recommender.neural.NeuMF
-
Model constructor
- NeuMF(DataModel, int, double, long) - Constructor for class es.upm.etsisi.cf4j.recommender.neural.NeuMF
-
Model constructor
- NeuMF(DataModel, int, int, int, double) - Constructor for class es.upm.etsisi.cf4j.recommender.neural.NeuMF
-
Model constructor
- NeuMF(DataModel, int, int, int, double, int[]) - Constructor for class es.upm.etsisi.cf4j.recommender.neural.NeuMF
-
Model constructor
- NeuMF(DataModel, int, int, int, double, int[], long) - Constructor for class es.upm.etsisi.cf4j.recommender.neural.NeuMF
-
Model constructor
- NeuMF(DataModel, int, int, int, double, long) - Constructor for class es.upm.etsisi.cf4j.recommender.neural.NeuMF
-
Model constructor
- NeuMF(DataModel, Map<String, Object>) - Constructor for class es.upm.etsisi.cf4j.recommender.neural.NeuMF
-
Model constructor from a Map containing the model's hyper-parameters values.
- NMF - Class in es.upm.etsisi.cf4j.recommender.matrixFactorization
-
Implements Lee, D.
- NMF(DataModel, int, int) - Constructor for class es.upm.etsisi.cf4j.recommender.matrixFactorization.NMF
-
Model constructor
- NMF(DataModel, int, int, long) - Constructor for class es.upm.etsisi.cf4j.recommender.matrixFactorization.NMF
-
Model constructor
- NMF(DataModel, Map<String, Object>) - Constructor for class es.upm.etsisi.cf4j.recommender.matrixFactorization.NMF
-
Model constructor from a Map containing the model's hyper-parameters values.
- Novelty - Class in es.upm.etsisi.cf4j.qualityMeasure.recommendation
-
This class the averaged novelty of the recomendations.
- Novelty(Recommender, int) - Constructor for class es.upm.etsisi.cf4j.qualityMeasure.recommendation.Novelty
-
Constructor of Novelty
- Novelty(Recommender, Map<String, Object>) - Constructor for class es.upm.etsisi.cf4j.qualityMeasure.recommendation.Novelty
-
Constructor from a Map object with the quality measure parameters.
- numberOfNeighbors - Variable in class es.upm.etsisi.cf4j.recommender.knn.ItemKNN
-
Number of neighbors (k)
- numberOfNeighbors - Variable in class es.upm.etsisi.cf4j.recommender.knn.UserKNN
-
Number of neighbors (k)
- numFactors - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.BiasedMF
-
Number of latent factors
- numFactors - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.BNMF
-
Number of factors
- numFactors - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.CLiMF
-
Number of latent factors
- numFactors - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.HPF
-
Number of latent factors
- numFactors - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.NMF
-
Number of factors
- numFactors - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.PMF
-
Number of latent factors
- numFactors - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.SVDPlusPlus
-
Number of latent factors
- numFactors - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.URP
-
Number of latent factors
- numFactors - Variable in class es.upm.etsisi.cf4j.recommender.neural.GMF
-
Number of latent factors
- numFactors - Variable in class es.upm.etsisi.cf4j.recommender.neural.MLP
-
Number of factors
- numFactorsGMF - Variable in class es.upm.etsisi.cf4j.recommender.neural.NeuMF
-
Number of GMF latent factors
- numFactorsMLP - Variable in class es.upm.etsisi.cf4j.recommender.neural.NeuMF
-
Number of MLP latent factors
- numIters - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.BiasedMF
-
Number of iterations
- numIters - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.BNMF
-
Number of iterations
- numIters - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.CLiMF
-
Number of iterations
- numIters - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.HPF
-
Number of iterations
- numIters - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.NMF
-
Number of iterations
- numIters - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.PMF
-
Number of iterations
- numIters - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.SVDPlusPlus
-
Number of iterations
- numIters - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.URP
-
Number of iterations
P
- p - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.BiasedMF
-
User factors
- p - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.PMF
-
User factors
- p - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.SVDPlusPlus
-
p parameter
- Parallelizer - Class in es.upm.etsisi.cf4j.util.process
-
This class is used to simplify the parallelization of collaborative filtering algorithms
- Parallelizer() - Constructor for class es.upm.etsisi.cf4j.util.process.Parallelizer
- ParamsGrid - Class in es.upm.etsisi.cf4j.util.optimization
-
This class generates the development set for a grid search.
- ParamsGrid() - Constructor for class es.upm.etsisi.cf4j.util.optimization.ParamsGrid
-
Creates a new ParamsGrid
- Partible<T> - Interface in es.upm.etsisi.cf4j.util.process
-
This interface handles the parallel execution of an array of T thorough Parallelizer class.
- Perfect - Class in es.upm.etsisi.cf4j.qualityMeasure.prediction
-
This class calculates the percentage of perfect predictions.
- Perfect(Recommender, double) - Constructor for class es.upm.etsisi.cf4j.qualityMeasure.prediction.Perfect
-
Constructor of the class which basically calls the father's one
- Perfect(Recommender, Map<String, Object>) - Constructor for class es.upm.etsisi.cf4j.qualityMeasure.prediction.Perfect
-
Constructor from a Map object with the quality measure parameters.
- phi - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.URP
-
Phi parameter
- PIP - Class in es.upm.etsisi.cf4j.recommender.knn.itemSimilarityMetric
-
This class implements the PIP CF similarity metric for the items.
- PIP - Class in es.upm.etsisi.cf4j.recommender.knn.userSimilarityMetric
-
Implements the following CF similarity metric: Ahn, H.
- PIP() - Constructor for class es.upm.etsisi.cf4j.recommender.knn.itemSimilarityMetric.PIP
- PIP() - Constructor for class es.upm.etsisi.cf4j.recommender.knn.userSimilarityMetric.PIP
- Plot - Class in es.upm.etsisi.cf4j.util.plot
-
Abstract class that represents a CF4J plot.
- Plot() - Constructor for class es.upm.etsisi.cf4j.util.plot.Plot
- PlotSettings - Class in es.upm.etsisi.cf4j.util.plot
-
This class contains global plot settings.
- PMF - Class in es.upm.etsisi.cf4j.recommender.matrixFactorization
-
Implements Mnih, A., & Salakhutdinov, R.
- PMF(DataModel, int, int) - Constructor for class es.upm.etsisi.cf4j.recommender.matrixFactorization.PMF
-
Model constructor
- PMF(DataModel, int, int, double) - Constructor for class es.upm.etsisi.cf4j.recommender.matrixFactorization.PMF
-
Model constructor
- PMF(DataModel, int, int, double, double, long) - Constructor for class es.upm.etsisi.cf4j.recommender.matrixFactorization.PMF
-
Model constructor
- PMF(DataModel, int, int, double, long) - Constructor for class es.upm.etsisi.cf4j.recommender.matrixFactorization.PMF
-
Model constructor
- PMF(DataModel, int, int, long) - Constructor for class es.upm.etsisi.cf4j.recommender.matrixFactorization.PMF
-
Model constructor
- PMF(DataModel, Map<String, Object>) - Constructor for class es.upm.etsisi.cf4j.recommender.matrixFactorization.PMF
-
Model constructor from a Map containing the model's hyper-parameters values.
- PMFRandomSearchCV - Class in es.upm.etsisi.cf4j.examples.gridSearch
-
In this example we tune the hyper-parameters of PMF recommender using the RandomSearchCV tool.
- PMFRandomSearchCV() - Constructor for class es.upm.etsisi.cf4j.examples.gridSearch.PMFRandomSearchCV
- Precision - Class in es.upm.etsisi.cf4j.qualityMeasure.recommendation
-
This class calculates the precision of the recommendations performed by a Recommender.
- Precision(Recommender, int, double) - Constructor for class es.upm.etsisi.cf4j.qualityMeasure.recommendation.Precision
-
Constructor of Precision
- Precision(Recommender, Map<String, Object>) - Constructor for class es.upm.etsisi.cf4j.qualityMeasure.recommendation.Precision
-
Constructor from a Map object with the quality measure parameters.
- predict(int, int) - Method in class es.upm.etsisi.cf4j.recommender.knn.ItemKNN
- predict(int, int) - Method in class es.upm.etsisi.cf4j.recommender.knn.UserKNN
- predict(int, int) - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.BeMF
- predict(int, int) - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.BiasedMF
- predict(int, int) - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.BNMF
- predict(int, int) - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.CLiMF
- predict(int, int) - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.DeepMF
- predict(int, int) - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.DirMF
- predict(int, int) - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.HPF
- predict(int, int) - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.NMF
- predict(int, int) - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.PMF
- predict(int, int) - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.SVDPlusPlus
- predict(int, int) - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.URP
- predict(int, int) - Method in class es.upm.etsisi.cf4j.recommender.neural.GMF
-
Returns the prediction of a rating of a certain user for a certain item, through these predictions the metrics of MAE, MSE and RMSE can be obtained.
- predict(int, int) - Method in class es.upm.etsisi.cf4j.recommender.neural.MLP
-
Returns the prediction of a rating of a certain user for a certain item, through these predictions the metrics of MAE, MSE and RMSE can be obtained.
- predict(int, int) - Method in class es.upm.etsisi.cf4j.recommender.neural.NCCF
-
Computes the probability that an item will be of interest to the user.
- predict(int, int) - Method in class es.upm.etsisi.cf4j.recommender.neural.NeuMF
-
Returns the prediction of a rating of a certain user for a certain item, through these predictions the metrics of MAE, MSE and RMSE can be obtained.
- predict(int, int) - Method in class es.upm.etsisi.cf4j.recommender.Recommender
-
Computes a rating prediction
- predict(TestUser) - Method in class es.upm.etsisi.cf4j.recommender.Recommender
-
Computes the rating predictions of the TestItems rated by a TestUser
- predictProba(int, int) - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.BeMF
-
Computes a prediction probability
- predictProba(int, int) - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.DirMF
-
Computes a prediction probability
- printData() - Method in class es.upm.etsisi.cf4j.util.plot.HistogramPlot
- printData() - Method in class es.upm.etsisi.cf4j.util.plot.Plot
-
Prints the plot data into the standard output
- printData(String) - Method in class es.upm.etsisi.cf4j.util.plot.HistogramPlot
- printData(String) - Method in class es.upm.etsisi.cf4j.util.plot.Plot
-
Prints the plot data into the standard output
- printData(String, String) - Method in class es.upm.etsisi.cf4j.util.plot.Plot
-
Prints the plot data into the standard output
- printResults(int) - Method in class es.upm.etsisi.cf4j.util.optimization.RandomSearch
-
Prints the results of the random search.
- printResults(int) - Method in class es.upm.etsisi.cf4j.util.optimization.RandomSearchCV
-
Prints the results of the random search.
- printResults(int, boolean) - Method in class es.upm.etsisi.cf4j.util.optimization.RandomSearch
-
Prints the results of the random search.
- printResults(int, boolean) - Method in class es.upm.etsisi.cf4j.util.optimization.RandomSearchCV
-
Prints the results of the random search.
- printResults(int, int, boolean) - Method in class es.upm.etsisi.cf4j.util.optimization.RandomSearch
-
Prints the results of the random search.
- printResults(int, int, boolean) - Method in class es.upm.etsisi.cf4j.util.optimization.RandomSearchCV
-
Prints the results of the random search.
- printResults(String, int, int, boolean) - Method in class es.upm.etsisi.cf4j.util.optimization.RandomSearch
-
Prints the results of the random search.
- printResults(String, int, int, boolean) - Method in class es.upm.etsisi.cf4j.util.optimization.RandomSearchCV
-
Prints the results of the random search.
Q
- q - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.BiasedMF
-
Item factors
- q - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.PMF
-
Item factors
- q - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.SVDPlusPlus
-
q parameter
- QualityMeasure - Class in es.upm.etsisi.cf4j.qualityMeasure
-
Abstract class used to simplify the evaluation of collaborative filtering based recommendation models.
- QualityMeasure(Recommender) - Constructor for class es.upm.etsisi.cf4j.qualityMeasure.QualityMeasure
-
Creates a new quality measure
R
- r - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.BNMF
-
Hyper-parameter of the binomial distribution.
- R2 - Class in es.upm.etsisi.cf4j.qualityMeasure.prediction
-
This class calculates the the coefficient of determination, usually denoted as R2, of the predictions performed by a recommender.
- R2(Recommender) - Constructor for class es.upm.etsisi.cf4j.qualityMeasure.prediction.R2
-
Constructor of the class which basically calls the father's one
- RandomSearch - Class in es.upm.etsisi.cf4j.util.optimization
-
Utility class to performs a random search over a Recommender instance.
- RandomSearch(DataModel, ParamsGrid, Class<? extends Recommender>, Class<? extends QualityMeasure>[], double) - Constructor for class es.upm.etsisi.cf4j.util.optimization.RandomSearch
-
RandomSearch constructor
- RandomSearch(DataModel, ParamsGrid, Class<? extends Recommender>, Class<? extends QualityMeasure>[], double, long) - Constructor for class es.upm.etsisi.cf4j.util.optimization.RandomSearch
-
RandomSearch constructor
- RandomSearch(DataModel, ParamsGrid, Class<? extends Recommender>, Class<? extends QualityMeasure>[], int) - Constructor for class es.upm.etsisi.cf4j.util.optimization.RandomSearch
-
RandomSearch constructor
- RandomSearch(DataModel, ParamsGrid, Class<? extends Recommender>, Class<? extends QualityMeasure>[], Map<String, Object>[], double) - Constructor for class es.upm.etsisi.cf4j.util.optimization.RandomSearch
-
RandomSearch constructor
- RandomSearch(DataModel, ParamsGrid, Class<? extends Recommender>, Class<? extends QualityMeasure>[], Map<String, Object>[], double, long) - Constructor for class es.upm.etsisi.cf4j.util.optimization.RandomSearch
-
RandomSearch constructor
- RandomSearch(DataModel, ParamsGrid, Class<? extends Recommender>, Class<? extends QualityMeasure>[], Map<String, Object>[], int) - Constructor for class es.upm.etsisi.cf4j.util.optimization.RandomSearch
-
RandomSearch constructor
- RandomSearch(DataModel, ParamsGrid, Class<? extends Recommender>, Class<? extends QualityMeasure>[], Map<String, Object>[], int, long) - Constructor for class es.upm.etsisi.cf4j.util.optimization.RandomSearch
-
RandomSearch constructor
- RandomSearch(DataModel, ParamsGrid, Class<? extends Recommender>, Class<? extends QualityMeasure>[], Map<String, Object>[], int, long, String) - Constructor for class es.upm.etsisi.cf4j.util.optimization.RandomSearch
-
RandomSearch constructor to be used inside es.upm.etsisi.cf4j.util.optimization package
- RandomSearch(DataModel, ParamsGrid, Class<? extends Recommender>, Class<? extends QualityMeasure>, double) - Constructor for class es.upm.etsisi.cf4j.util.optimization.RandomSearch
-
RandomSearch constructor
- RandomSearch(DataModel, ParamsGrid, Class<? extends Recommender>, Class<? extends QualityMeasure>, double, long) - Constructor for class es.upm.etsisi.cf4j.util.optimization.RandomSearch
-
RandomSearch constructor
- RandomSearch(DataModel, ParamsGrid, Class<? extends Recommender>, Class<? extends QualityMeasure>, int) - Constructor for class es.upm.etsisi.cf4j.util.optimization.RandomSearch
-
RandomSearch constructor
- RandomSearch(DataModel, ParamsGrid, Class<? extends Recommender>, Class<? extends QualityMeasure>, Map<String, Object>, double) - Constructor for class es.upm.etsisi.cf4j.util.optimization.RandomSearch
-
RandomSearch constructor
- RandomSearch(DataModel, ParamsGrid, Class<? extends Recommender>, Class<? extends QualityMeasure>, Map<String, Object>, double, long) - Constructor for class es.upm.etsisi.cf4j.util.optimization.RandomSearch
-
RandomSearch constructor
- RandomSearch(DataModel, ParamsGrid, Class<? extends Recommender>, Class<? extends QualityMeasure>, Map<String, Object>, int) - Constructor for class es.upm.etsisi.cf4j.util.optimization.RandomSearch
-
RandomSearch constructor
- RandomSearch(DataModel, ParamsGrid, Class<? extends Recommender>, Class<? extends QualityMeasure>, Map<String, Object>, int, long) - Constructor for class es.upm.etsisi.cf4j.util.optimization.RandomSearch
-
RandomSearch constructor
- RandomSearchCV - Class in es.upm.etsisi.cf4j.util.optimization
-
Utility class to performs a random search over a Recommender instance.
- RandomSearchCV(DataModel, ParamsGrid, Class<? extends Recommender>, Class<? extends QualityMeasure>[], int, double) - Constructor for class es.upm.etsisi.cf4j.util.optimization.RandomSearchCV
-
RandomSearchCV constructor
- RandomSearchCV(DataModel, ParamsGrid, Class<? extends Recommender>, Class<? extends QualityMeasure>[], int, double, long) - Constructor for class es.upm.etsisi.cf4j.util.optimization.RandomSearchCV
-
RandomSearchCV constructor
- RandomSearchCV(DataModel, ParamsGrid, Class<? extends Recommender>, Class<? extends QualityMeasure>[], int, int) - Constructor for class es.upm.etsisi.cf4j.util.optimization.RandomSearchCV
-
RandomSearchCV constructor
- RandomSearchCV(DataModel, ParamsGrid, Class<? extends Recommender>, Class<? extends QualityMeasure>[], Map<String, Object>[], int, double) - Constructor for class es.upm.etsisi.cf4j.util.optimization.RandomSearchCV
-
RandomSearchCV constructor
- RandomSearchCV(DataModel, ParamsGrid, Class<? extends Recommender>, Class<? extends QualityMeasure>[], Map<String, Object>[], int, double, long) - Constructor for class es.upm.etsisi.cf4j.util.optimization.RandomSearchCV
-
RandomSearchCV constructor
- RandomSearchCV(DataModel, ParamsGrid, Class<? extends Recommender>, Class<? extends QualityMeasure>[], Map<String, Object>[], int, int) - Constructor for class es.upm.etsisi.cf4j.util.optimization.RandomSearchCV
-
RandomSearchCV constructor
- RandomSearchCV(DataModel, ParamsGrid, Class<? extends Recommender>, Class<? extends QualityMeasure>[], Map<String, Object>[], int, int, long) - Constructor for class es.upm.etsisi.cf4j.util.optimization.RandomSearchCV
-
RandomSearchCV constructor
- RandomSearchCV(DataModel, ParamsGrid, Class<? extends Recommender>, Class<? extends QualityMeasure>, int, double) - Constructor for class es.upm.etsisi.cf4j.util.optimization.RandomSearchCV
-
RandomSearchCV constructor
- RandomSearchCV(DataModel, ParamsGrid, Class<? extends Recommender>, Class<? extends QualityMeasure>, int, double, long) - Constructor for class es.upm.etsisi.cf4j.util.optimization.RandomSearchCV
-
RandomSearchCV constructor
- RandomSearchCV(DataModel, ParamsGrid, Class<? extends Recommender>, Class<? extends QualityMeasure>, int, int) - Constructor for class es.upm.etsisi.cf4j.util.optimization.RandomSearchCV
-
RandomSearchCV constructor
- RandomSearchCV(DataModel, ParamsGrid, Class<? extends Recommender>, Class<? extends QualityMeasure>, Map<String, Object>, int, double) - Constructor for class es.upm.etsisi.cf4j.util.optimization.RandomSearchCV
-
RandomSearchCV constructor
- RandomSearchCV(DataModel, ParamsGrid, Class<? extends Recommender>, Class<? extends QualityMeasure>, Map<String, Object>, int, double, long) - Constructor for class es.upm.etsisi.cf4j.util.optimization.RandomSearchCV
-
RandomSearchCV constructor
- RandomSearchCV(DataModel, ParamsGrid, Class<? extends Recommender>, Class<? extends QualityMeasure>, Map<String, Object>, int, int) - Constructor for class es.upm.etsisi.cf4j.util.optimization.RandomSearchCV
-
RandomSearchCV constructor
- RandomSearchCV(DataModel, ParamsGrid, Class<? extends Recommender>, Class<? extends QualityMeasure>, Map<String, Object>, int, int, long) - Constructor for class es.upm.etsisi.cf4j.util.optimization.RandomSearchCV
-
RandomSearchCV constructor
- RandomSplitDataSet - Class in es.upm.etsisi.cf4j.data
-
This class implements the DataSet interface by random splitting the collaborative filtering ratings allocated in a text file.
- RandomSplitDataSet(String) - Constructor for class es.upm.etsisi.cf4j.data.RandomSplitDataSet
-
Generates a DataSet form a text file.
- RandomSplitDataSet(String, double, double) - Constructor for class es.upm.etsisi.cf4j.data.RandomSplitDataSet
-
Generates a DataSet form a text file.
- RandomSplitDataSet(String, double, double, long) - Constructor for class es.upm.etsisi.cf4j.data.RandomSplitDataSet
-
Generates a DataSet form a text file.
- RandomSplitDataSet(String, double, double, String) - Constructor for class es.upm.etsisi.cf4j.data.RandomSplitDataSet
-
Generates a DataSet form a text file.
- RandomSplitDataSet(String, double, double, String, long) - Constructor for class es.upm.etsisi.cf4j.data.RandomSplitDataSet
-
Generates a DataSet form a text file.
- RandomSplitDataSet(String, String) - Constructor for class es.upm.etsisi.cf4j.data.RandomSplitDataSet
-
Generates a DataSet form a text file.
- range(int) - Static method in class es.upm.etsisi.cf4j.util.Maths
-
Returns an array of int values.
- range(int, int) - Static method in class es.upm.etsisi.cf4j.util.Maths
-
Returns an array of int values.
- range(int, int, int) - Static method in class es.upm.etsisi.cf4j.util.Maths
-
Returns an array of int values.
- range(int, int, int, boolean) - Static method in class es.upm.etsisi.cf4j.util.Maths
-
Returns an array of int values.
- rating - Variable in class es.upm.etsisi.cf4j.data.types.DataSetEntry
-
Rating value
- Rating - Class in es.upm.etsisi.cf4j.data.types
-
The class Rating is an structure of a pair of elements, which are the index and the rating.
- Rating(int, double) - Constructor for class es.upm.etsisi.cf4j.data.types.Rating
-
Creates a new instance
- ratings - Variable in class es.upm.etsisi.cf4j.data.ManualDataSet
-
Raw stored ratings
- ratings - Variable in class es.upm.etsisi.cf4j.data.RandomSplitDataSet
-
Raw stored ratings
- ratings - Variable in class es.upm.etsisi.cf4j.data.TrainTestFilesDataSet
-
Raw stored ratings
- ratings - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.URP
-
Plausible ratings (must be sorted in ascending order)
- Recall - Class in es.upm.etsisi.cf4j.qualityMeasure.recommendation
-
This class calculates the recall of the recommendations performed by a Recommender.
- Recall(Recommender, int, double) - Constructor for class es.upm.etsisi.cf4j.qualityMeasure.recommendation.Recall
-
Constructor
- Recall(Recommender, Map<String, Object>) - Constructor for class es.upm.etsisi.cf4j.qualityMeasure.recommendation.Recall
-
Constructor from a Map object with the quality measure parameters.
- recommender - Variable in class es.upm.etsisi.cf4j.qualityMeasure.QualityMeasure
-
Recommender instance for which the quality measure are going to be computed
- Recommender - Class in es.upm.etsisi.cf4j.recommender
-
Abstract class that represents any recommender.
- Recommender(DataModel) - Constructor for class es.upm.etsisi.cf4j.recommender.Recommender
-
Recommender constructor
- RMSE - Class in es.upm.etsisi.cf4j.qualityMeasure.prediction
-
This class calculates the Root Mean Squared Error (RMSE) between the predictions and the test ratings.
- RMSE(Recommender) - Constructor for class es.upm.etsisi.cf4j.qualityMeasure.prediction.RMSE
-
Constructor of the class which basically calls the father's one
- run(Item) - Method in class es.upm.etsisi.cf4j.recommender.knn.itemSimilarityMetric.ItemSimilarityMetric
- run(User) - Method in class es.upm.etsisi.cf4j.recommender.knn.userSimilarityMetric.UserSimilarityMetric
- run(T) - Method in interface es.upm.etsisi.cf4j.util.process.Partible
-
Is executed once for each object in the array of objects passed as parameter in the exec method of the Parallelizer class.
S
- save(String) - Method in class es.upm.etsisi.cf4j.data.DataModel
-
Saves the content of the DataModel in a serialized file.
- ScatterPlot - Class in es.upm.etsisi.cf4j.util.plot
-
Implements an ScatterPlot.
- ScatterPlot(String, String) - Constructor for class es.upm.etsisi.cf4j.util.plot.ScatterPlot
-
Creates new ScatterPlot
- ScatterPlotExample - Class in es.upm.etsisi.cf4j.examples.plot
-
In this example we build an ScatterPlot comparing the number of ratings of each test user with his/her averaged prediction error using BiasedMF as recommender.
- ScatterPlotExample() - Constructor for class es.upm.etsisi.cf4j.examples.plot.ScatterPlotExample
- Search - Class in es.upm.etsisi.cf4j.util
-
This class contains useful search methods.
- Search() - Constructor for class es.upm.etsisi.cf4j.util.Search
- setBackgroundColor(Color) - Static method in class es.upm.etsisi.cf4j.util.plot.PlotSettings
-
Sets the plot's background color
- setBoolean(String, boolean) - Method in class es.upm.etsisi.cf4j.data.DataBank
-
Sets or stores a boolean inside the DataBank.
- setBooleanArray(String, boolean[]) - Method in class es.upm.etsisi.cf4j.data.DataBank
-
Sets or stores a boolean array inside the DataBank.
- setClearInset(double) - Static method in class es.upm.etsisi.cf4j.util.plot.PlotSettings
-
Sets the inset for a clear border
- setColorPalette(Color[]) - Static method in class es.upm.etsisi.cf4j.util.plot.PlotSettings
-
Sets the color paletee
- setDatamodel(DataModel) - Method in class es.upm.etsisi.cf4j.recommender.knn.itemSimilarityMetric.ItemSimilarityMetric
-
Sets the DataModel for which the similarity are going to be computed
- setDatamodel(DataModel) - Method in class es.upm.etsisi.cf4j.recommender.knn.userSimilarityMetric.UserSimilarityMetric
-
Sets the DataModel for which the similarity are going to be computed
- setDouble(String, double) - Method in class es.upm.etsisi.cf4j.data.DataBank
-
Sets or stores a double inside the DataBank.
- setDoubleArray(String, double[]) - Method in class es.upm.etsisi.cf4j.data.DataBank
-
Sets or stores a double array inside the DataBank.
- setHeight(int) - Static method in class es.upm.etsisi.cf4j.util.plot.PlotSettings
-
Sets the plot height in pixels
- setInt(String, int) - Method in class es.upm.etsisi.cf4j.data.DataBank
-
Sets or stores an int inside the DataBank.
- setIntArray(String, int[]) - Method in class es.upm.etsisi.cf4j.data.DataBank
-
Sets or stores an int array inside the DataBank.
- setLabelsNotVisible(String) - Method in class es.upm.etsisi.cf4j.util.plot.XYPlot
-
Set the labels not visible for a series
- setLabelsVisible(String) - Method in class es.upm.etsisi.cf4j.util.plot.XYPlot
-
Set the labels visible for a series
- setLegendDistance(double) - Static method in class es.upm.etsisi.cf4j.util.plot.PlotSettings
-
Sets the legend distance
- setLegendFont(Font) - Static method in class es.upm.etsisi.cf4j.util.plot.PlotSettings
-
Sets the legend font
- setLegendInset(double) - Static method in class es.upm.etsisi.cf4j.util.plot.PlotSettings
-
Sets the inset for the legend
- setPointsFont(Font) - Static method in class es.upm.etsisi.cf4j.util.plot.PlotSettings
-
Sets the points font
- setPrimaryFont(Font) - Static method in class es.upm.etsisi.cf4j.util.plot.PlotSettings
-
Sets the labels font
- setRating(double) - Method in class es.upm.etsisi.cf4j.data.types.Rating
-
Modifies the previously defined rating.
- setString(String, String) - Method in class es.upm.etsisi.cf4j.data.DataBank
-
Sets or stores an String inside the DataBank.
- setStringArray(String, String[]) - Method in class es.upm.etsisi.cf4j.data.DataBank
-
Sets or stores a double array inside the DataBank.
- setTicksFont(Font) - Static method in class es.upm.etsisi.cf4j.util.plot.PlotSettings
-
Sets the ticks font
- setValue(String, double, double) - Method in class es.upm.etsisi.cf4j.util.plot.LinePlot
-
Sets a single value of a series
- setValue(String, int, double) - Method in class es.upm.etsisi.cf4j.util.plot.LinePlot
-
Sets a single value of a series
- setWidth(int) - Static method in class es.upm.etsisi.cf4j.util.plot.PlotSettings
-
Sets the plot width in pixels
- setxAxisInset(double) - Static method in class es.upm.etsisi.cf4j.util.plot.PlotSettings
-
Sets the inset for the x axis
- setxAxisLabelDistance(double) - Static method in class es.upm.etsisi.cf4j.util.plot.PlotSettings
-
Sets the label distance in the x axis
- setXY(String, String, double, double) - Method in class es.upm.etsisi.cf4j.util.plot.XYPlot
-
Sets a single point of a series
- setyAxisInset(double) - Static method in class es.upm.etsisi.cf4j.util.plot.PlotSettings
-
Sets the inset for the y axis
- setyAxisLabelDistance(double) - Static method in class es.upm.etsisi.cf4j.util.plot.PlotSettings
-
Sets the label distance in the y axis
- similarities - Variable in class es.upm.etsisi.cf4j.recommender.knn.itemSimilarityMetric.ItemSimilarityMetric
-
Matrix that contains the similarity between each pair of items
- similarities - Variable in class es.upm.etsisi.cf4j.recommender.knn.userSimilarityMetric.UserSimilarityMetric
-
Matrix that contains the similarity between each pair of users
- similarity(Item, Item) - Method in class es.upm.etsisi.cf4j.recommender.knn.itemSimilarityMetric.AdjustedCosine
- similarity(Item, Item) - Method in class es.upm.etsisi.cf4j.recommender.knn.itemSimilarityMetric.Correlation
- similarity(Item, Item) - Method in class es.upm.etsisi.cf4j.recommender.knn.itemSimilarityMetric.CorrelationConstrained
- similarity(Item, Item) - Method in class es.upm.etsisi.cf4j.recommender.knn.itemSimilarityMetric.Cosine
- similarity(Item, Item) - Method in class es.upm.etsisi.cf4j.recommender.knn.itemSimilarityMetric.ItemSimilarityMetric
-
This method must returns the similarity between two items.
- similarity(Item, Item) - Method in class es.upm.etsisi.cf4j.recommender.knn.itemSimilarityMetric.Jaccard
- similarity(Item, Item) - Method in class es.upm.etsisi.cf4j.recommender.knn.itemSimilarityMetric.JMSD
- similarity(Item, Item) - Method in class es.upm.etsisi.cf4j.recommender.knn.itemSimilarityMetric.MSD
- similarity(Item, Item) - Method in class es.upm.etsisi.cf4j.recommender.knn.itemSimilarityMetric.PIP
- similarity(Item, Item) - Method in class es.upm.etsisi.cf4j.recommender.knn.itemSimilarityMetric.Singularities
- similarity(Item, Item) - Method in class es.upm.etsisi.cf4j.recommender.knn.itemSimilarityMetric.SpearmanRank
- similarity(User, User) - Method in class es.upm.etsisi.cf4j.recommender.knn.userSimilarityMetric.AdjustedCosine
- similarity(User, User) - Method in class es.upm.etsisi.cf4j.recommender.knn.userSimilarityMetric.CJMSD
- similarity(User, User) - Method in class es.upm.etsisi.cf4j.recommender.knn.userSimilarityMetric.Correlation
- similarity(User, User) - Method in class es.upm.etsisi.cf4j.recommender.knn.userSimilarityMetric.CorrelationConstrained
- similarity(User, User) - Method in class es.upm.etsisi.cf4j.recommender.knn.userSimilarityMetric.Cosine
- similarity(User, User) - Method in class es.upm.etsisi.cf4j.recommender.knn.userSimilarityMetric.Jaccard
- similarity(User, User) - Method in class es.upm.etsisi.cf4j.recommender.knn.userSimilarityMetric.JMSD
- similarity(User, User) - Method in class es.upm.etsisi.cf4j.recommender.knn.userSimilarityMetric.MSD
- similarity(User, User) - Method in class es.upm.etsisi.cf4j.recommender.knn.userSimilarityMetric.PIP
- similarity(User, User) - Method in class es.upm.etsisi.cf4j.recommender.knn.userSimilarityMetric.Singularities
- similarity(User, User) - Method in class es.upm.etsisi.cf4j.recommender.knn.userSimilarityMetric.SpearmanRank
- similarity(User, User) - Method in class es.upm.etsisi.cf4j.recommender.knn.userSimilarityMetric.UserSimilarityMetric
-
This method must returns the similarity between two users.
- Singularities - Class in es.upm.etsisi.cf4j.recommender.knn.itemSimilarityMetric
-
This class implements the singularities CF similarity metric.
- Singularities - Class in es.upm.etsisi.cf4j.recommender.knn.userSimilarityMetric
-
Implements the following CF similarity metric: Bobadilla, J., Ortega, F., & Hernando, A
- Singularities(double[], double[]) - Constructor for class es.upm.etsisi.cf4j.recommender.knn.itemSimilarityMetric.Singularities
-
Constructor of the similarity metric
- Singularities(double[], double[]) - Constructor for class es.upm.etsisi.cf4j.recommender.knn.userSimilarityMetric.Singularities
-
Constructor of the similarity metric
- SortedRatingList - Class in es.upm.etsisi.cf4j.data.types
-
SortedRatingList is a specific type of sorted ArrayList that uses the Rating class internally.
- SortedRatingList() - Constructor for class es.upm.etsisi.cf4j.data.types.SortedRatingList
- SpearmanRank - Class in es.upm.etsisi.cf4j.recommender.knn.itemSimilarityMetric
-
Implements traditional Spearman Rank as CF similarity metric for the items.
- SpearmanRank - Class in es.upm.etsisi.cf4j.recommender.knn.userSimilarityMetric
-
Implements traditional Spearman Rank as CF similarity metric.
- SpearmanRank() - Constructor for class es.upm.etsisi.cf4j.recommender.knn.itemSimilarityMetric.SpearmanRank
- SpearmanRank() - Constructor for class es.upm.etsisi.cf4j.recommender.knn.userSimilarityMetric.SpearmanRank
- SVDPlusPlus - Class in es.upm.etsisi.cf4j.recommender.matrixFactorization
-
Implements Koren, Y. (2008, August).
- SVDPlusPlus(DataModel, int, int) - Constructor for class es.upm.etsisi.cf4j.recommender.matrixFactorization.SVDPlusPlus
-
Model constructor
- SVDPlusPlus(DataModel, int, int, double, double) - Constructor for class es.upm.etsisi.cf4j.recommender.matrixFactorization.SVDPlusPlus
-
Model constructor
- SVDPlusPlus(DataModel, int, int, double, double, long) - Constructor for class es.upm.etsisi.cf4j.recommender.matrixFactorization.SVDPlusPlus
-
Model constructor
- SVDPlusPlus(DataModel, int, int, long) - Constructor for class es.upm.etsisi.cf4j.recommender.matrixFactorization.SVDPlusPlus
-
Model constructor
- SVDPlusPlus(DataModel, Map<String, Object>) - Constructor for class es.upm.etsisi.cf4j.recommender.matrixFactorization.SVDPlusPlus
-
Model constructor from a Map containing the model's hyper-parameters values.
T
- tauRte - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.HPF
- tauShp - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.HPF
- TestItem - Class in es.upm.etsisi.cf4j.data
-
A TestItem extends an Item given it the following properties: Index in the DataModel array which stores test items.
- TestItem(String, int, int) - Constructor for class es.upm.etsisi.cf4j.data.TestItem
-
Creates a new instance of a test item.
- testItemIndex - Variable in class es.upm.etsisi.cf4j.data.TestItem
-
Index in the DataModel array which stores test items
- testItemsRatings - Variable in class es.upm.etsisi.cf4j.data.TestUser
-
TestItems rated by the user
- testRatings - Variable in class es.upm.etsisi.cf4j.data.ManualDataSet
-
Raw stored test ratings
- testRatings - Variable in class es.upm.etsisi.cf4j.data.RandomSplitDataSet
-
Raw stored test ratings
- testRatings - Variable in class es.upm.etsisi.cf4j.data.TrainTestFilesDataSet
-
Raw stored test ratings
- TestUser - Class in es.upm.etsisi.cf4j.data
-
A TestUser extends an User given him or her the following properties: Index in the DataModel array which stores test users.
- TestUser(String, int, int) - Constructor for class es.upm.etsisi.cf4j.data.TestUser
-
Creates a new instance of a test user.
- testUserIndex - Variable in class es.upm.etsisi.cf4j.data.TestUser
-
Index in the DataModel array which stores test users
- testUsersRatings - Variable in class es.upm.etsisi.cf4j.data.TestItem
-
Array of test users that have rated this test item
- threshold - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.CLiMF
-
Threshold to binarize rating matrix.
- toString() - Method in class es.upm.etsisi.cf4j.data.DataModel
- toString() - Method in class es.upm.etsisi.cf4j.data.types.DataSetEntry
- toString() - Method in class es.upm.etsisi.cf4j.data.types.Rating
- toString() - Method in class es.upm.etsisi.cf4j.recommender.knn.ItemKNN
- toString() - Method in class es.upm.etsisi.cf4j.recommender.knn.itemSimilarityMetric.CorrelationConstrained
- toString() - Method in class es.upm.etsisi.cf4j.recommender.knn.itemSimilarityMetric.ItemSimilarityMetric
- toString() - Method in class es.upm.etsisi.cf4j.recommender.knn.itemSimilarityMetric.Singularities
- toString() - Method in class es.upm.etsisi.cf4j.recommender.knn.UserKNN
- toString() - Method in class es.upm.etsisi.cf4j.recommender.knn.userSimilarityMetric.CorrelationConstrained
- toString() - Method in class es.upm.etsisi.cf4j.recommender.knn.userSimilarityMetric.Singularities
- toString() - Method in class es.upm.etsisi.cf4j.recommender.knn.userSimilarityMetric.UserSimilarityMetric
- toString() - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.BeMF
- toString() - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.BiasedMF
- toString() - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.BNMF
- toString() - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.CLiMF
- toString() - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.DeepMF
- toString() - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.DirMF
- toString() - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.HPF
- toString() - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.NMF
- toString() - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.PMF
- toString() - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.SVDPlusPlus
- toString() - Method in class es.upm.etsisi.cf4j.recommender.matrixFactorization.URP
- toString() - Method in class es.upm.etsisi.cf4j.recommender.neural.GMF
- toString() - Method in class es.upm.etsisi.cf4j.recommender.neural.MLP
- toString() - Method in class es.upm.etsisi.cf4j.recommender.neural.NCCF
- toString() - Method in class es.upm.etsisi.cf4j.recommender.neural.NeuMF
- toString() - Method in class es.upm.etsisi.cf4j.util.plot.HistogramPlot
- toString() - Method in class es.upm.etsisi.cf4j.util.plot.Plot
- toString(String) - Method in class es.upm.etsisi.cf4j.util.plot.HistogramPlot
- toString(String) - Method in class es.upm.etsisi.cf4j.util.plot.Plot
-
Stringify the plot data
- toString(String, String) - Method in class es.upm.etsisi.cf4j.util.plot.Plot
-
Stringify the plot data
- TrainTestFilesDataSet - Class in es.upm.etsisi.cf4j.data
-
This class implements the DataSet interface by loading training and test ratings from separated text files.
- TrainTestFilesDataSet(String, String) - Constructor for class es.upm.etsisi.cf4j.data.TrainTestFilesDataSet
-
Generates a DataSet form training and test ratings files.
- TrainTestFilesDataSet(String, String, String) - Constructor for class es.upm.etsisi.cf4j.data.TrainTestFilesDataSet
-
Generates a DataSet form training and test ratings files.
U
- U - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.CLiMF
-
Users' latent factors
- URP - Class in es.upm.etsisi.cf4j.recommender.matrixFactorization
-
Implements Marlin, B.
- URP(DataModel, int, double[], int) - Constructor for class es.upm.etsisi.cf4j.recommender.matrixFactorization.URP
-
Model constructor
- URP(DataModel, int, double[], int, double) - Constructor for class es.upm.etsisi.cf4j.recommender.matrixFactorization.URP
-
Model constructor
- URP(DataModel, int, double[], int, double, long) - Constructor for class es.upm.etsisi.cf4j.recommender.matrixFactorization.URP
-
Model constructor
- URP(DataModel, int, double[], int, long) - Constructor for class es.upm.etsisi.cf4j.recommender.matrixFactorization.URP
-
Model constructor
- URP(DataModel, Map<String, Object>) - Constructor for class es.upm.etsisi.cf4j.recommender.matrixFactorization.URP
-
Model constructor from a Map containing the model's hyper-parameters values.
- User - Class in es.upm.etsisi.cf4j.data
-
Defines a composition of an User.
- User(String, int) - Constructor for class es.upm.etsisi.cf4j.data.User
-
Creates a new instance of an user.
- userId - Variable in class es.upm.etsisi.cf4j.data.types.DataSetEntry
-
Identifier of the user who rated this item
- userIndex - Variable in class es.upm.etsisi.cf4j.data.User
-
User index in the DataModel
- UserKNN - Class in es.upm.etsisi.cf4j.recommender.knn
-
Implements user-to-user KNN based collaborative filtering
- UserKNN(DataModel, int, UserSimilarityMetric, UserKNN.AggregationApproach) - Constructor for class es.upm.etsisi.cf4j.recommender.knn.UserKNN
-
Recommender constructor
- UserKNN(DataModel, Map<String, Object>) - Constructor for class es.upm.etsisi.cf4j.recommender.knn.UserKNN
-
Recommender constructor from a Map containing the recommender's hyper-parameters values.
- UserKNN.AggregationApproach - Enum in es.upm.etsisi.cf4j.recommender.knn
-
Available aggregation approaches to merge k-nearest neighbors ratings
- UserKnnComparison - Class in es.upm.etsisi.cf4j.examples.recommender
-
In this example we compare the MAE, Coverage, Precision and Recall quality measures scores for different similarity metrics applied to user-to-user knn based collaborative filtering.
- UserKnnComparison() - Constructor for class es.upm.etsisi.cf4j.examples.recommender.UserKnnComparison
- UserKNNGridSearch - Class in es.upm.etsisi.cf4j.examples.gridSearch
-
In this example we tune the parameters of UserKNN recommender using the GridSearch tool.
- UserKNNGridSearch() - Constructor for class es.upm.etsisi.cf4j.examples.gridSearch.UserKNNGridSearch
- UserSimilarityMetric - Class in es.upm.etsisi.cf4j.recommender.knn.userSimilarityMetric
-
This class process the similarity measure between two users.
- UserSimilarityMetric() - Constructor for class es.upm.etsisi.cf4j.recommender.knn.userSimilarityMetric.UserSimilarityMetric
- usersRatings - Variable in class es.upm.etsisi.cf4j.data.Item
-
Users that have rated the item
V
- V - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.CLiMF
-
Items's latent factors
- valueOf(String) - Static method in enum es.upm.etsisi.cf4j.recommender.knn.ItemKNN.AggregationApproach
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum es.upm.etsisi.cf4j.recommender.knn.UserKNN.AggregationApproach
-
Returns the enum constant of this type with the specified name.
- values() - Static method in enum es.upm.etsisi.cf4j.recommender.knn.ItemKNN.AggregationApproach
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum es.upm.etsisi.cf4j.recommender.knn.UserKNN.AggregationApproach
-
Returns an array containing the constants of this enum type, in the order they are declared.
W
- w - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.NMF
-
User factors
- WEIGHTED_MEAN - es.upm.etsisi.cf4j.recommender.knn.ItemKNN.AggregationApproach
- WEIGHTED_MEAN - es.upm.etsisi.cf4j.recommender.knn.UserKNN.AggregationApproach
X
- XYPlot - Class in es.upm.etsisi.cf4j.util.plot
-
Implements an XYPlot.
- XYPlot(String[], String, String) - Constructor for class es.upm.etsisi.cf4j.util.plot.XYPlot
-
Creates a new XYPlot
- XYPlot(String[], String, String, boolean) - Constructor for class es.upm.etsisi.cf4j.util.plot.XYPlot
-
Creates a new XYPlot
- XYPlotExample - Class in es.upm.etsisi.cf4j.examples.plot
-
In this example we compare the Precision score (y axis) and the Recall score (x axis) for PMF and NMF recommenders using an XYPlot.
- XYPlotExample() - Constructor for class es.upm.etsisi.cf4j.examples.plot.XYPlotExample
Y
- y - Variable in class es.upm.etsisi.cf4j.recommender.matrixFactorization.SVDPlusPlus
-
y parameter
All Classes All Packages